Xinying Qiu , RuiFan Wen , Feifeng Wu , Jueyi Mao , Tasnim Azad , Yang Wang , Junquan Zhu , Xin Zhou , Haotian Xie , Kimsor Hong , Binbin Li , Liang Zhang , Chuan Wen
{"title":"The role of double-negative B cells in the pathogenesis of systemic lupus erythematosus","authors":"Xinying Qiu , RuiFan Wen , Feifeng Wu , Jueyi Mao , Tasnim Azad , Yang Wang , Junquan Zhu , Xin Zhou , Haotian Xie , Kimsor Hong , Binbin Li , Liang Zhang , Chuan Wen","doi":"10.1016/j.autrev.2025.103821","DOIUrl":null,"url":null,"abstract":"<div><div>B cells are essential to the pathophysiology of systemic lupus erythematosus (SLE), a chronic autoimmune illness. IgD-CD27-double negative B cells (DNB cells) are one of the aberrant B cell subsets linked to SLE that have attracted much scientific interest. There is growing evidence that DNB cells play a significant role in the development of the disease and are strongly linked to the activity of lupus. These cells play a pivotal role in the pathogenesis of SLE by producing a diverse array of autoantibodies, which form immune complexes that drive target organ damage. A comprehensive understanding of SLE pathophysiology necessitates in-depth investigation into DNB cells, not only to elucidate their mechanistic contributions but also to uncover novel therapeutic strategies.</div><div>According to available data, treatments that target B cells have proven effective in managing SLE; nevertheless, a significant breakthrough in precision medicine for SLE may come from targeting DNB cells specifically. Despite growing interest in DNB cells, their precise characteristics, developmental trajectories, and regulatory mechanisms remain incompletely defined, posing significant challenges to the field. A comprehensive investigation of the regulatory mechanisms governing DNB cell differentiation and expansion in SLE may facilitate novel therapeutic discoveries. This review aims to provide an updated synthesis of current research on DNB cells, with a focus on their origins, developmental trajectories in SLE, and potential as precision therapeutic targets.</div></div>","PeriodicalId":8664,"journal":{"name":"Autoimmunity reviews","volume":"24 7","pages":"Article 103821"},"PeriodicalIF":9.2000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autoimmunity reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568997225000813","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
B cells are essential to the pathophysiology of systemic lupus erythematosus (SLE), a chronic autoimmune illness. IgD-CD27-double negative B cells (DNB cells) are one of the aberrant B cell subsets linked to SLE that have attracted much scientific interest. There is growing evidence that DNB cells play a significant role in the development of the disease and are strongly linked to the activity of lupus. These cells play a pivotal role in the pathogenesis of SLE by producing a diverse array of autoantibodies, which form immune complexes that drive target organ damage. A comprehensive understanding of SLE pathophysiology necessitates in-depth investigation into DNB cells, not only to elucidate their mechanistic contributions but also to uncover novel therapeutic strategies.
According to available data, treatments that target B cells have proven effective in managing SLE; nevertheless, a significant breakthrough in precision medicine for SLE may come from targeting DNB cells specifically. Despite growing interest in DNB cells, their precise characteristics, developmental trajectories, and regulatory mechanisms remain incompletely defined, posing significant challenges to the field. A comprehensive investigation of the regulatory mechanisms governing DNB cell differentiation and expansion in SLE may facilitate novel therapeutic discoveries. This review aims to provide an updated synthesis of current research on DNB cells, with a focus on their origins, developmental trajectories in SLE, and potential as precision therapeutic targets.
期刊介绍:
Autoimmunity Reviews is a publication that features up-to-date, structured reviews on various topics in the field of autoimmunity. These reviews are written by renowned experts and include demonstrative illustrations and tables. Each article will have a clear "take-home" message for readers.
The selection of articles is primarily done by the Editors-in-Chief, based on recommendations from the international Editorial Board. The topics covered in the articles span all areas of autoimmunology, aiming to bridge the gap between basic and clinical sciences.
In terms of content, the contributions in basic sciences delve into the pathophysiology and mechanisms of autoimmune disorders, as well as genomics and proteomics. On the other hand, clinical contributions focus on diseases related to autoimmunity, novel therapies, and clinical associations.
Autoimmunity Reviews is internationally recognized, and its articles are indexed and abstracted in prestigious databases such as PubMed/Medline, Science Citation Index Expanded, Biosciences Information Services, and Chemical Abstracts.