Ketogenesis mitigates metabolic dysfunction-associated steatotic liver disease through mechanisms that extend beyond fat oxidation.

Eric D Queathem,David B Stagg,Alisa B Nelson,Alec B Chaves,Scott B Crown,Kyle Fulghum,D Andre d'Avignon,Justin R Ryder,Patrick J Bolan,Abdirahman Hayir,Jacob R Gillingham,Shannon Jannatpour,Ferrol I Rome,Ashley S Williams,Deborah M Muoio,Sayeed Ikramuddin,Curtis C Hughey,Patrycja Puchalska,Peter A Crawford
{"title":"Ketogenesis mitigates metabolic dysfunction-associated steatotic liver disease through mechanisms that extend beyond fat oxidation.","authors":"Eric D Queathem,David B Stagg,Alisa B Nelson,Alec B Chaves,Scott B Crown,Kyle Fulghum,D Andre d'Avignon,Justin R Ryder,Patrick J Bolan,Abdirahman Hayir,Jacob R Gillingham,Shannon Jannatpour,Ferrol I Rome,Ashley S Williams,Deborah M Muoio,Sayeed Ikramuddin,Curtis C Hughey,Patrycja Puchalska,Peter A Crawford","doi":"10.1172/jci191021","DOIUrl":null,"url":null,"abstract":"The progression of metabolic dysfunction-associated steatotic liver disease (MASLD) to metabolic dysfunction-associated steatohepatitis (MASH) involves alterations in both liver-autonomous and systemic metabolism that influence the liver's balance of fat accretion and disposal. Here, we quantify the contributions of hepatic oxidative pathways to liver injury in MASLD-MASH. Using NMR spectroscopy, UHPLC-MS, and GC-MS, we performed stable-isotope tracing and formal flux modeling to quantify hepatic oxidative fluxes in humans across the spectrum of MASLD-MASH, and in mouse models of impaired ketogenesis. In humans with MASH, liver injury correlated positively with ketogenesis and total fat oxidation, but not with turnover of the tricarboxylic acid cycle. Loss-of-function mouse models demonstrated that disruption of mitochondrial HMG-CoA synthase (HMGCS2), the rate-limiting step of ketogenesis, impairs overall hepatic fat oxidation and induces a MASLD-MASH-like phenotype. Disruption of mitochondrial β-hydroxybutyrate dehydrogenase (BDH1), the terminal step of ketogenesis, also impaired fat oxidation, but surprisingly did not exacerbate steatotic liver injury. Taken together, these findings suggest that quantifiable variations in overall hepatic fat oxidation may not be a primary determinant of MASLD-to-MASH progression, but rather, that maintenance of ketogenesis could serve a protective role through additional mechanisms that extend beyond overall rates of fat oxidation.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Clinical Investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1172/jci191021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The progression of metabolic dysfunction-associated steatotic liver disease (MASLD) to metabolic dysfunction-associated steatohepatitis (MASH) involves alterations in both liver-autonomous and systemic metabolism that influence the liver's balance of fat accretion and disposal. Here, we quantify the contributions of hepatic oxidative pathways to liver injury in MASLD-MASH. Using NMR spectroscopy, UHPLC-MS, and GC-MS, we performed stable-isotope tracing and formal flux modeling to quantify hepatic oxidative fluxes in humans across the spectrum of MASLD-MASH, and in mouse models of impaired ketogenesis. In humans with MASH, liver injury correlated positively with ketogenesis and total fat oxidation, but not with turnover of the tricarboxylic acid cycle. Loss-of-function mouse models demonstrated that disruption of mitochondrial HMG-CoA synthase (HMGCS2), the rate-limiting step of ketogenesis, impairs overall hepatic fat oxidation and induces a MASLD-MASH-like phenotype. Disruption of mitochondrial β-hydroxybutyrate dehydrogenase (BDH1), the terminal step of ketogenesis, also impaired fat oxidation, but surprisingly did not exacerbate steatotic liver injury. Taken together, these findings suggest that quantifiable variations in overall hepatic fat oxidation may not be a primary determinant of MASLD-to-MASH progression, but rather, that maintenance of ketogenesis could serve a protective role through additional mechanisms that extend beyond overall rates of fat oxidation.
生酮通过超出脂肪氧化的机制减轻代谢功能障碍相关的脂肪变性肝病。
代谢功能障碍相关脂肪性肝病(MASLD)发展为代谢功能障碍相关脂肪性肝炎(MASH)涉及肝脏自主代谢和全身代谢的改变,影响肝脏脂肪积累和处置的平衡。在这里,我们量化了MASLD-MASH中肝脏氧化途径对肝损伤的贡献。使用NMR波谱,UHPLC-MS和GC-MS,我们进行了稳定同位素示踪和正式通量建模,以定量人类在MASLD-MASH光谱中的肝脏氧化通量,以及在小鼠模型中受损的酮生成。在患有MASH的人中,肝损伤与生酮和总脂肪氧化呈正相关,但与三羧酸循环的周转无关。功能丧失小鼠模型表明,线粒体HMG-CoA合成酶(HMGCS2)的破坏,这是生酮的限速步骤,损害了肝脏脂肪的整体氧化,并诱导了masld - mash样表型。线粒体β-羟基丁酸脱氢酶(BDH1)的破坏,酮生成的最后一步,也会损害脂肪氧化,但令人惊讶的是没有加重脂肪变性肝损伤。综上所述,这些发现表明,肝脏脂肪氧化的可量化变化可能不是masld向mash进展的主要决定因素,相反,维持生酮可以通过超出脂肪氧化总体速率的其他机制发挥保护作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信