{"title":"Scalable Modification of an Evaporated Self-Assembled Transport Layer through Evaporated CuSCN","authors":"Jiuda Wen, Youpeng Wang, Pengfei Liu, Zetong Sunli, Yuan Luo, Xuejiao Wang, You Gao, Ying Zhao, Biao Shi, Xiaodan Zhang","doi":"10.1021/acsami.5c03024","DOIUrl":null,"url":null,"abstract":"The [4-(3,6-dimethyl-9<i>H</i>-carbazol-9-yl)butyl]phosphonic acid (Me-4PACz) self-assembled monolayer (SAM) deposited by solution processing has been widely used as an excellent hole-transporting material in high-performance inverted perovskite solar cells (PSCs). While vacuum-based evaporation of Me-4PACz offers significant potential for large-scale PSC fabrication, its application is hindered by the poor wettability of the evaporated SAM, which adversely affects the device performance. In this work, an evaporated cuprous thiocyanate (CuSCN) film was employed to modify the evaporated Me-4PACz, which can improve the wettability, leading to enhanced coverage and uniformity of the perovskite film. In addition, the incorporation of CuSCN established an energy level gradient at the SAM–perovskite interface, facilitating efficient hole transport. Moreover, the CuSCN layer contributed to interface passivation, effectively reducing interface recombination losses. As a result, an efficiency of 21.62% for single-junction wide-bandgap PSCs (1.68 eV) was achieved. Additionally, the films fabricated by evaporation show good uniformity on a large-area substrate, laying a foundation for large-area PSCs.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c03024","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The [4-(3,6-dimethyl-9H-carbazol-9-yl)butyl]phosphonic acid (Me-4PACz) self-assembled monolayer (SAM) deposited by solution processing has been widely used as an excellent hole-transporting material in high-performance inverted perovskite solar cells (PSCs). While vacuum-based evaporation of Me-4PACz offers significant potential for large-scale PSC fabrication, its application is hindered by the poor wettability of the evaporated SAM, which adversely affects the device performance. In this work, an evaporated cuprous thiocyanate (CuSCN) film was employed to modify the evaporated Me-4PACz, which can improve the wettability, leading to enhanced coverage and uniformity of the perovskite film. In addition, the incorporation of CuSCN established an energy level gradient at the SAM–perovskite interface, facilitating efficient hole transport. Moreover, the CuSCN layer contributed to interface passivation, effectively reducing interface recombination losses. As a result, an efficiency of 21.62% for single-junction wide-bandgap PSCs (1.68 eV) was achieved. Additionally, the films fabricated by evaporation show good uniformity on a large-area substrate, laying a foundation for large-area PSCs.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.