Yuan Tian, Wenqi Zhou, Michele Viscione, Hao Dong, David S. Kammer, Olga Fink
{"title":"Interactive symbolic regression with co-design mechanism through offline reinforcement learning","authors":"Yuan Tian, Wenqi Zhou, Michele Viscione, Hao Dong, David S. Kammer, Olga Fink","doi":"10.1038/s41467-025-59288-y","DOIUrl":null,"url":null,"abstract":"<p>Symbolic Regression holds great potential for uncovering underlying mathematical and physical relationships from observed data. However, the vast combinatorial space of possible expressions poses significant challenges for previous online search methods and pre-trained transformer models, which mostly do not consider the integration of domain experts’ prior knowledge. To address these challenges, we propose the Symbolic Q-network, an advanced interactive framework for large-scale symbolic regression. Unlike previous transformer-based SR approaches, Symbolic Q-network leverages reinforcement learning without relying on a transformer-based decoder. Furthermore, we propose a co-design mechanism, where the Symbolic Q-network facilitates effective interaction with domain experts at any stage of the equation discovery process. Our extensive experiments demonstrate Sym-Q performs comparably to existing pretrained models across multiple benchmarks. Furthermore, our experiments on real-world cases demonstrate that the interactive co-design mechanism significantly enhances Symbolic Q-network’s performance, achieving greater performance gains than standard autoregressive models.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"49 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59288-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Symbolic Regression holds great potential for uncovering underlying mathematical and physical relationships from observed data. However, the vast combinatorial space of possible expressions poses significant challenges for previous online search methods and pre-trained transformer models, which mostly do not consider the integration of domain experts’ prior knowledge. To address these challenges, we propose the Symbolic Q-network, an advanced interactive framework for large-scale symbolic regression. Unlike previous transformer-based SR approaches, Symbolic Q-network leverages reinforcement learning without relying on a transformer-based decoder. Furthermore, we propose a co-design mechanism, where the Symbolic Q-network facilitates effective interaction with domain experts at any stage of the equation discovery process. Our extensive experiments demonstrate Sym-Q performs comparably to existing pretrained models across multiple benchmarks. Furthermore, our experiments on real-world cases demonstrate that the interactive co-design mechanism significantly enhances Symbolic Q-network’s performance, achieving greater performance gains than standard autoregressive models.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.