Mass deposition of microbes from wildfire smoke to the sea surface microlayer

IF 3.8 1区 地球科学 Q1 LIMNOLOGY
Siyao Yue, Yafang Cheng, Lishan Zheng, Senchao Lai, Shan Wang, Tianli Song, Linjie Li, Ping Li, Jialei Zhu, Meng Li, Lianfang Wei, Chaoqun Ma, Rui Jin, Yingyi Zhang, Yele Sun, Zifa Wang, Kimitaka Kawamura, Cong‐Qiang Liu, Hang Su, Meinrat O. Andreae, Pingqing Fu
{"title":"Mass deposition of microbes from wildfire smoke to the sea surface microlayer","authors":"Siyao Yue, Yafang Cheng, Lishan Zheng, Senchao Lai, Shan Wang, Tianli Song, Linjie Li, Ping Li, Jialei Zhu, Meng Li, Lianfang Wei, Chaoqun Ma, Rui Jin, Yingyi Zhang, Yele Sun, Zifa Wang, Kimitaka Kawamura, Cong‐Qiang Liu, Hang Su, Meinrat O. Andreae, Pingqing Fu","doi":"10.1002/lno.70078","DOIUrl":null,"url":null,"abstract":"Microbes in the sea surface microlayer (SML) are key to connecting the ocean and the atmosphere, affecting the exchange of matter, momentum, and heat at the interface. However, their sources have never been quantified systematically. Seawater has long been deemed their major source, whereas atmospheric deposition is regarded as trivial or merely providing additional nutrients. Here, combining atmospheric observations and quantitative budget analyses, we show that during the Indonesian peatland wildfire events the smoke can directly deposit abundant microbes into the SML, which can be comparable to the estimated supply from seawater and potentially diversify the microbial community of the SML. This land–air–ocean interaction is relevant for global climate, as it may induce previously unknown effects on the air–sea interactions, especially in an increasingly warming future with more intensifying wildfires.","PeriodicalId":18143,"journal":{"name":"Limnology and Oceanography","volume":"15 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/lno.70078","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Microbes in the sea surface microlayer (SML) are key to connecting the ocean and the atmosphere, affecting the exchange of matter, momentum, and heat at the interface. However, their sources have never been quantified systematically. Seawater has long been deemed their major source, whereas atmospheric deposition is regarded as trivial or merely providing additional nutrients. Here, combining atmospheric observations and quantitative budget analyses, we show that during the Indonesian peatland wildfire events the smoke can directly deposit abundant microbes into the SML, which can be comparable to the estimated supply from seawater and potentially diversify the microbial community of the SML. This land–air–ocean interaction is relevant for global climate, as it may induce previously unknown effects on the air–sea interactions, especially in an increasingly warming future with more intensifying wildfires.
野火烟雾中的微生物大量沉积到海面微层
海洋表面微层(SML)中的微生物是连接海洋和大气的关键,影响着界面上物质、动量和热量的交换。然而,它们的来源从来没有被系统地量化。长期以来,海水一直被认为是它们的主要来源,而大气沉积则被认为是微不足道的,或者只是提供额外的营养物质。结合大气观测和定量预算分析,我们发现在印度尼西亚泥炭地野火事件期间,烟雾可以直接将丰富的微生物沉积到SML中,这可以与海水的估计供应量相媲美,并可能使SML的微生物群落多样化。这种陆地-空气-海洋相互作用与全球气候有关,因为它可能会对海气相互作用产生以前未知的影响,特别是在未来日益变暖、野火更加加剧的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Limnology and Oceanography
Limnology and Oceanography 地学-海洋学
CiteScore
8.80
自引率
6.70%
发文量
254
审稿时长
3 months
期刊介绍: Limnology and Oceanography (L&O; print ISSN 0024-3590, online ISSN 1939-5590) publishes original articles, including scholarly reviews, about all aspects of limnology and oceanography. The journal''s unifying theme is the understanding of aquatic systems. Submissions are judged on the originality of their data, interpretations, and ideas, and on the degree to which they can be generalized beyond the particular aquatic system examined. Laboratory and modeling studies must demonstrate relevance to field environments; typically this means that they are bolstered by substantial "real-world" data. Few purely theoretical or purely empirical papers are accepted for review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信