Electrochemical Self‐Assembly of Boron‐Based Cathode‐Electrolyte Interphase to Stabilize 4.65 V LiCoO2

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hengyu Ren, Xiaohu Wang, Wangyang Ding, Chunyu Xu, Wenguang Zhao, Haocheng Ji, Haocong Yi, Zhaohuang Zhan, Yongli Song, Lin Zhou, Qinghe Zhao, Feng Pan
{"title":"Electrochemical Self‐Assembly of Boron‐Based Cathode‐Electrolyte Interphase to Stabilize 4.65 V LiCoO2","authors":"Hengyu Ren, Xiaohu Wang, Wangyang Ding, Chunyu Xu, Wenguang Zhao, Haocheng Ji, Haocong Yi, Zhaohuang Zhan, Yongli Song, Lin Zhou, Qinghe Zhao, Feng Pan","doi":"10.1002/adfm.202504165","DOIUrl":null,"url":null,"abstract":"The cathode‐electrolyte interphase (CEI) is vital for the stability of LiCoO<jats:sub>2</jats:sub> (LCO) beyond 4.55 V (vs Li/Li<jats:sup>+</jats:sup>). Herein, the full coverage of boron‐based CEI is achieved on LCO surface via utilizing the self‐wetting synthesis of boric acid (i.e., B‐LCO), accompanying with the subsequent electrochemical self‐assembly process upon cycles. Initially, the B‐LCO is coated with borate deposits (size of 10–20 nm), then it melts and fully covers the surface upon sintering, leading to the full coverage of boron‐based artificial CEI, which directly reduces the side reactions induced by highly oxidative Co<jats:sup>4+</jats:sup>/O<jats:sup>n−</jats:sup> (0 &lt; n &lt; 2). Significantly, during cycling, the in situ interfacial reactions between the surface boron‐based species and LiF promote the formation of crystalline LiB<jats:sub>6</jats:sub>O<jats:sub>9</jats:sub>F components, showing the mechanically robust and highly Li<jats:sup>+</jats:sup> conductive characteristics. Due to the synergism of robust CEI and structurally tough surface rocksalt (RS) phase, not only the more reversible phase transition and uniform Li<jats:sup>+</jats:sup> (de)lithiation are achieved, but also the particle cracks and surface deterioration issues are effectively inhibited. As a result, the B‐LCO||Li cells show excellent cycle stability, with a high retention of 84.0% in 500 cycles in 3–4.65 V.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"8 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202504165","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The cathode‐electrolyte interphase (CEI) is vital for the stability of LiCoO2 (LCO) beyond 4.55 V (vs Li/Li+). Herein, the full coverage of boron‐based CEI is achieved on LCO surface via utilizing the self‐wetting synthesis of boric acid (i.e., B‐LCO), accompanying with the subsequent electrochemical self‐assembly process upon cycles. Initially, the B‐LCO is coated with borate deposits (size of 10–20 nm), then it melts and fully covers the surface upon sintering, leading to the full coverage of boron‐based artificial CEI, which directly reduces the side reactions induced by highly oxidative Co4+/On− (0 < n < 2). Significantly, during cycling, the in situ interfacial reactions between the surface boron‐based species and LiF promote the formation of crystalline LiB6O9F components, showing the mechanically robust and highly Li+ conductive characteristics. Due to the synergism of robust CEI and structurally tough surface rocksalt (RS) phase, not only the more reversible phase transition and uniform Li+ (de)lithiation are achieved, but also the particle cracks and surface deterioration issues are effectively inhibited. As a result, the B‐LCO||Li cells show excellent cycle stability, with a high retention of 84.0% in 500 cycles in 3–4.65 V.
硼基阴极-电解质界面的电化学自组装稳定4.65 V LiCoO2
阴极-电解质间相(CEI)对钴酸锂(LCO)在 4.55 V 以上(相对于 Li/Li+)的稳定性至关重要。在这里,通过利用硼酸(即 B-LCO)的自润湿合成以及随后的循环电化学自组装过程,实现了硼基 CEI 在 LCO 表面的全面覆盖。起初,B-LCO 表面有硼酸盐沉积物(大小为 10-20 纳米),烧结时硼酸盐沉积物熔化并完全覆盖表面,从而形成全覆盖的硼基人工 CEI,直接减少了高氧化性 Co4+/On- (0 < n < 2) 引起的副反应。值得注意的是,在循环过程中,表面硼基物种与 LiF 之间的原位界面反应促进了结晶 LiB6O9F 成分的形成,从而显示出机械坚固和高 Li+ 导电的特性。由于坚固的 CEI 和结构坚韧的表面岩盐(RS)相的协同作用,不仅实现了更可逆的相变和均匀的 Li+(脱)锂化,还有效抑制了颗粒裂纹和表面劣化问题。因此,B-LCO||锂电池表现出卓越的循环稳定性,在 3-4.65 V 下循环 500 次,电池保持率高达 84.0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信