Quantifying the global climate feedback from energy-based adaptation

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Alexander C. Abajian, Tamma Carleton, Kyle C. Meng, Olivier Deschênes
{"title":"Quantifying the global climate feedback from energy-based adaptation","authors":"Alexander C. Abajian, Tamma Carleton, Kyle C. Meng, Olivier Deschênes","doi":"10.1038/s41467-025-59201-7","DOIUrl":null,"url":null,"abstract":"<p>Many behavioral responses to climate change are carbon-intensive, raising concerns that adaptation may cause additional warming. The sign and magnitude of this feedback depend on how increased emissions from cooling balance against reduced emissions from heating across space and time. We present an empirical approach that forecasts the effect of future adaptive energy use on global average temperature over the 21<sup>st</sup> century. We estimate that energy-based adaptation will lower global mean surface temperature in 2099 by 0.07 to 0.12 °C relative to baseline projections under Representative Concentration Pathways 4.5 and 8.5. This cooling avoids 0.6 to 1.8 trillion U.S. Dollars ($2019) in damages, depending on the baseline emissions scenario. Energy-based adaptation lowers business-as-usual emissions for 85% of countries, reducing the mitigation required to meet their unilateral Nationally Determined Contributions by 20% on average. These findings indicate that while business-as-usual adaptive energy use is unlikely to accelerate warming, it raises important implications for countries’ existing mitigation commitments.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"29 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59201-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Many behavioral responses to climate change are carbon-intensive, raising concerns that adaptation may cause additional warming. The sign and magnitude of this feedback depend on how increased emissions from cooling balance against reduced emissions from heating across space and time. We present an empirical approach that forecasts the effect of future adaptive energy use on global average temperature over the 21st century. We estimate that energy-based adaptation will lower global mean surface temperature in 2099 by 0.07 to 0.12 °C relative to baseline projections under Representative Concentration Pathways 4.5 and 8.5. This cooling avoids 0.6 to 1.8 trillion U.S. Dollars ($2019) in damages, depending on the baseline emissions scenario. Energy-based adaptation lowers business-as-usual emissions for 85% of countries, reducing the mitigation required to meet their unilateral Nationally Determined Contributions by 20% on average. These findings indicate that while business-as-usual adaptive energy use is unlikely to accelerate warming, it raises important implications for countries’ existing mitigation commitments.

Abstract Image

量化基于能源的适应带来的全球气候反馈
许多应对气候变化的行为都是碳密集型的,这引发了人们对适应气候变化可能导致进一步变暖的担忧。这种反馈的符号和大小取决于冷却排放的增加与加热排放的减少在空间和时间上的平衡情况。我们提出了一种实证方法来预测未来适应性能源使用对21世纪全球平均温度的影响。我们估计,相对于代表性浓度路径4.5和8.5的基线预估,基于能量的适应将使2099年全球平均地表温度降低0.07至0.12°C。根据基线排放情景,这种冷却避免了0.6至1.8万亿美元(2019年美元)的损失。以能源为基础的适应使85%的国家的“一切照常”排放降低,使实现其单方面国家自主贡献所需的减排平均减少20%。这些发现表明,尽管一切照旧的适应性能源使用不太可能加速变暖,但它对各国现有的减缓承诺产生了重要影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信