Unveiling the Healing Mechanism of Nanopores in Ice Films

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-04-26 DOI:10.1002/smll.202502245
Pengfei Nan, Kang Wu, Qizhu Li, Yangrui Liu, Hongzheng Wang, Yangjian Lin, Jinlong Zhu, Jing Wu, Fang Lin, Yumei Wang, Binghui Ge
{"title":"Unveiling the Healing Mechanism of Nanopores in Ice Films","authors":"Pengfei Nan, Kang Wu, Qizhu Li, Yangrui Liu, Hongzheng Wang, Yangjian Lin, Jinlong Zhu, Jing Wu, Fang Lin, Yumei Wang, Binghui Ge","doi":"10.1002/smll.202502245","DOIUrl":null,"url":null,"abstract":"As a ubiquitous substance in nature, ice has attracted substantial research interest across a variety of fields, including physics, environmental science, biology, and cryopreservation. However, the intricate structural transformations within ice remain elusive owing to the stringent experimental constraints. Herein, the detailed evolution of ice nanopores, including expansion and healing, is investigated using advanced cryo‐electron microscopy combined with low‐dose techniques, and the underlying mechanisms are revealed through surface‐free energy analysis. Three pivotal factors are identified as driving the evolution mechanism of ice nanopores: the nanopore geometry and dimensions and the thickness of the ice film. This research not only provides novel insights into the dynamic structural evolution of ice at the molecular scale but also paves the way for a deeper understanding of the fundamental properties and behaviors of ice. Moreover, the healing mechanism of the nanopores is anticipated to be utilized in ice manipulation and nanofabrication.","PeriodicalId":228,"journal":{"name":"Small","volume":"15 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202502245","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

As a ubiquitous substance in nature, ice has attracted substantial research interest across a variety of fields, including physics, environmental science, biology, and cryopreservation. However, the intricate structural transformations within ice remain elusive owing to the stringent experimental constraints. Herein, the detailed evolution of ice nanopores, including expansion and healing, is investigated using advanced cryo‐electron microscopy combined with low‐dose techniques, and the underlying mechanisms are revealed through surface‐free energy analysis. Three pivotal factors are identified as driving the evolution mechanism of ice nanopores: the nanopore geometry and dimensions and the thickness of the ice film. This research not only provides novel insights into the dynamic structural evolution of ice at the molecular scale but also paves the way for a deeper understanding of the fundamental properties and behaviors of ice. Moreover, the healing mechanism of the nanopores is anticipated to be utilized in ice manipulation and nanofabrication.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信