Joseph D. Edwards, Melanie R. Kazenel, Yiqi Luo, Joshua S. Lynn, Rebecca L. McCulley, Lara Souza, Carolyn Young, Jennifer A. Rudgers, Stephanie N. Kivlin
{"title":"Warming Disrupts Plant–Fungal Endophyte Symbiosis More Severely in Leaves Than Roots","authors":"Joseph D. Edwards, Melanie R. Kazenel, Yiqi Luo, Joshua S. Lynn, Rebecca L. McCulley, Lara Souza, Carolyn Young, Jennifer A. Rudgers, Stephanie N. Kivlin","doi":"10.1111/gcb.70207","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Disruptions to functionally important symbionts with global change will negatively impact plant fitness, with broader consequences for species' abundances, distribution, and community composition. Fungal endophytes that live inside plant leaves and roots could potentially mitigate plant heat stress from global warming. Conversely, disruptions of these symbioses could exacerbate the negative impacts of warming. To better understand the consistency and strength of warming-induced changes to fungal endophytes, we examined fungal leaf and root endophytes in three grassland warming experiments in the US ranging from 2 to 25 years and spanning 2000 km, 12°C of mean annual temperature, and 600 mm of precipitation. We found that experimental warming disrupted symbiosis between plants and fungal endophytes. Colonization of plant tissues by septate fungi decreased in response to warming by 90% in plant leaves and 35% in roots. Warming also reduced fungal diversity and changed community composition in plant leaves, but not roots. The strength, but not direction, of warming effects on fungal endophytes varied by up to 75% among warming experiments. Finally, warming decoupled fungal endophytes from host metabolism by decreasing the correlation between endophyte community and host metabolome dissimilarity. These effects were strongest in the shorter-term experiment, suggesting endophyte-host metabolome function may acclimate to warming over decades. Overall, warming-driven disruption of fungal endophyte community structure and function suggests that this symbiosis may not be a reliable mechanism to promote plant resilience and ameliorate stress responses under global change.</p>\n </div>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 4","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70207","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Disruptions to functionally important symbionts with global change will negatively impact plant fitness, with broader consequences for species' abundances, distribution, and community composition. Fungal endophytes that live inside plant leaves and roots could potentially mitigate plant heat stress from global warming. Conversely, disruptions of these symbioses could exacerbate the negative impacts of warming. To better understand the consistency and strength of warming-induced changes to fungal endophytes, we examined fungal leaf and root endophytes in three grassland warming experiments in the US ranging from 2 to 25 years and spanning 2000 km, 12°C of mean annual temperature, and 600 mm of precipitation. We found that experimental warming disrupted symbiosis between plants and fungal endophytes. Colonization of plant tissues by septate fungi decreased in response to warming by 90% in plant leaves and 35% in roots. Warming also reduced fungal diversity and changed community composition in plant leaves, but not roots. The strength, but not direction, of warming effects on fungal endophytes varied by up to 75% among warming experiments. Finally, warming decoupled fungal endophytes from host metabolism by decreasing the correlation between endophyte community and host metabolome dissimilarity. These effects were strongest in the shorter-term experiment, suggesting endophyte-host metabolome function may acclimate to warming over decades. Overall, warming-driven disruption of fungal endophyte community structure and function suggests that this symbiosis may not be a reliable mechanism to promote plant resilience and ameliorate stress responses under global change.
期刊介绍:
Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health.
Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.