Quantitative Microstructural Analysis of Exhumed Epidote-Amphibolites and Plate Interface Rheology in Warm Subduction Zones

IF 2.9 2区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Laurens H. Kleijbeuker, Hamed Amiri, Maartje F. Hamers, Alissa J. Kotowski
{"title":"Quantitative Microstructural Analysis of Exhumed Epidote-Amphibolites and Plate Interface Rheology in Warm Subduction Zones","authors":"Laurens H. Kleijbeuker,&nbsp;Hamed Amiri,&nbsp;Maartje F. Hamers,&nbsp;Alissa J. Kotowski","doi":"10.1029/2024GC011886","DOIUrl":null,"url":null,"abstract":"<p>Epidote-amphibolites form along the plate interface during subduction infancy and are stable in warm, mature subduction zones that generate slow earthquakes. Epidote-amphibolite rheology therefore likely influences plate-scale processes during plate boundary formation and grain-scale processes that give rise to slip transients. We present optical and electron microscopy of naturally deformed epidote-amphibolites from beneath the Oman ophiolite (∼7–10 kbar, 400–550°C) to characterize their deformation behavior. Epidote-amphibolites are fine-grained, strongly foliated and lineated, and exhibit polyphase fabrics in which amphiboles (grain size ∼10–50 μm) and epidotes (grain size ∼5–20 μm) are strain-accommodating phases. Two-point correlation connectivity analysis demonstrates that amphiboles are well-connected regardless of phase proportions/distributions. Chemical analysis and electron backscatter diffraction reveals amphibole syn-kinematic metamorphic zonations, strong crystallographic and shape - preferred orientations (CPOs and SPOs), subgrain geometries indicating (hk0)[001] slip, and high average Grain Orientation Spreads (GOS; ∼6°), interpreted as coupled dissolution-precipitation creep (DPC) and dislocation glide. Epidotes record weak CPOs, low intragranular misorientations, moderate SPOs, and low GOS (∼0–2°), interpreted as deformation by DPC. Depending on phase distributions, epidote-amphibolite rheology can be approximated as interconnected weak layers of amphibole dissolution creep or a composite rheology of plasticity and fluid-assisted/diffusion-accommodated creep. We estimate stress from quartz piezometry (∼30–45 MPa) and strain rates from flow laws and geologic data (6 · 10<sup>−11</sup> to 10<sup>−13</sup> s<sup>−1</sup>), and calculate equivalent viscosities of &lt;10<sup>18</sup> Pa-s. On tectonic timescales, such low viscosities are consistent with epidote-amphibolites serving as strain localizing agents during subduction infancy. On seismic timescales, coupled dislocation glide and diffusion creep exemplify a strain-hardening deformation state that could culminate in creep transients.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"26 4","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011886","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011886","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Epidote-amphibolites form along the plate interface during subduction infancy and are stable in warm, mature subduction zones that generate slow earthquakes. Epidote-amphibolite rheology therefore likely influences plate-scale processes during plate boundary formation and grain-scale processes that give rise to slip transients. We present optical and electron microscopy of naturally deformed epidote-amphibolites from beneath the Oman ophiolite (∼7–10 kbar, 400–550°C) to characterize their deformation behavior. Epidote-amphibolites are fine-grained, strongly foliated and lineated, and exhibit polyphase fabrics in which amphiboles (grain size ∼10–50 μm) and epidotes (grain size ∼5–20 μm) are strain-accommodating phases. Two-point correlation connectivity analysis demonstrates that amphiboles are well-connected regardless of phase proportions/distributions. Chemical analysis and electron backscatter diffraction reveals amphibole syn-kinematic metamorphic zonations, strong crystallographic and shape - preferred orientations (CPOs and SPOs), subgrain geometries indicating (hk0)[001] slip, and high average Grain Orientation Spreads (GOS; ∼6°), interpreted as coupled dissolution-precipitation creep (DPC) and dislocation glide. Epidotes record weak CPOs, low intragranular misorientations, moderate SPOs, and low GOS (∼0–2°), interpreted as deformation by DPC. Depending on phase distributions, epidote-amphibolite rheology can be approximated as interconnected weak layers of amphibole dissolution creep or a composite rheology of plasticity and fluid-assisted/diffusion-accommodated creep. We estimate stress from quartz piezometry (∼30–45 MPa) and strain rates from flow laws and geologic data (6 · 10−11 to 10−13 s−1), and calculate equivalent viscosities of <1018 Pa-s. On tectonic timescales, such low viscosities are consistent with epidote-amphibolites serving as strain localizing agents during subduction infancy. On seismic timescales, coupled dislocation glide and diffusion creep exemplify a strain-hardening deformation state that could culminate in creep transients.

Abstract Image

暖俯冲带绿帘石-角闪岩定量显微结构分析及板块界面流变学
绿帘石-角闪岩在俯冲婴儿期沿板块界面形成,在产生缓慢地震的温暖成熟俯冲带中稳定存在。因此,绿帘石-角闪岩流变学可能影响板块边界形成过程中的板块尺度过程和引起瞬变滑移的颗粒尺度过程。我们展示了阿曼蛇绿岩(~ 7-10 kbar, 400-550°C)下自然变形的绿帘石角闪石的光学和电子显微镜,以表征它们的变形行为。绿帘石-角闪岩呈细粒、强片理和线状,呈多相组构,其中角闪石(粒径~ 10-50 μm)和绿帘石(粒径~ 5-20 μm)为应变适应相。两点相关连通性分析表明,无论相比例/分布如何,角闪石都具有良好的连通性。化学分析和电子背散射衍射揭示了角闪孔同步变质带,强晶体学和形状偏好取向(CPOs和SPOs),亚晶几何形状表明(hk0)[001]滑移,高平均晶粒取向差(GOS);~ 6°),解释为耦合溶解-沉淀蠕变(DPC)和位错滑动。绿帘石记录弱CPOs,低粒内定向,中等spo和低GOS(~ 0-2°),被DPC解释为变形。根据相分布的不同,绿帘石-角闪石流变学可以近似为相互连接的角闪洞溶蚀蠕变弱层,或者是塑性和流体辅助/扩散调节蠕变的复合流变学。我们根据石英测压法估算应力(~ 30-45 MPa),根据流动规律和地质数据估算应变率(6·10−11至10−13 s−1),并计算出1018 Pa-s的等效粘度。在构造时间尺度上,这种低粘度与俯冲初期绿帘石-角闪岩作为应变局部化剂的作用是一致的。在地震时间尺度上,位错滑动和扩散蠕变的耦合体现了一种应变硬化变形状态,这种变形状态可能在蠕变瞬变中达到顶峰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geochemistry Geophysics Geosystems
Geochemistry Geophysics Geosystems 地学-地球化学与地球物理
CiteScore
5.90
自引率
11.40%
发文量
252
审稿时长
1 months
期刊介绍: Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged. Areas of interest for this peer-reviewed journal include, but are not limited to: The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution Principles and applications of geochemical proxies to studies of Earth history The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信