Alireza HosseiniArani, Manuel Schilling, Benjamin Tennstedt, Alexey Kupriyanov, Quentin Beaufils, Annike Knabe, Arpetha C. Sreekantaiah, Franck Pereira dos Santos, Steffen Schön, Jürgen Müller
{"title":"Combined Classical and Quantum Accelerometers for Future Satellite Gravity Missions","authors":"Alireza HosseiniArani, Manuel Schilling, Benjamin Tennstedt, Alexey Kupriyanov, Quentin Beaufils, Annike Knabe, Arpetha C. Sreekantaiah, Franck Pereira dos Santos, Steffen Schön, Jürgen Müller","doi":"10.1029/2024EA004187","DOIUrl":null,"url":null,"abstract":"<p>Cold atom interferometry based quantum accelerometers (Q-ACCs) are very promising for future satellite gravity missions thanks to their strength in providing long-term stable and precise measurements of non-gravitational accelerations. However, their limitations due to the low measurement rate and the existence of ambiguities in the raw sensor measurements call for hybridization of the Q-ACC with a classical one (e.g., electrostatic) with higher bandwidth. While previous hybridization studies have so far considered simple noise models for the Q-ACC and neglected the impact of satellite rotation on the phase shift of the accelerometer, we perform here a more advanced hybridization simulation by implementing a comprehensive noise model for the satellite-based Q-ACCs and considering the full impact of rotation, gravity gradient, and self-gravity on the instrument. We perform simulation studies for scenarios with different assumptions about quantum and classical sensors and satellite missions. The performance benefits of the hybrid solutions, taking the synergy of both classical and Q-ACCs into account, will be quantified. We found that implementing a hybrid accelerometer onboard a future gravity mission improves the gravity solution by one to two orders in lower and higher degrees. In particular, the produced global gravity field maps show a drastic reduction in the instrumental contribution to the striping effect after introducing measurements from the hybrid accelerometers.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 4","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA004187","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EA004187","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Cold atom interferometry based quantum accelerometers (Q-ACCs) are very promising for future satellite gravity missions thanks to their strength in providing long-term stable and precise measurements of non-gravitational accelerations. However, their limitations due to the low measurement rate and the existence of ambiguities in the raw sensor measurements call for hybridization of the Q-ACC with a classical one (e.g., electrostatic) with higher bandwidth. While previous hybridization studies have so far considered simple noise models for the Q-ACC and neglected the impact of satellite rotation on the phase shift of the accelerometer, we perform here a more advanced hybridization simulation by implementing a comprehensive noise model for the satellite-based Q-ACCs and considering the full impact of rotation, gravity gradient, and self-gravity on the instrument. We perform simulation studies for scenarios with different assumptions about quantum and classical sensors and satellite missions. The performance benefits of the hybrid solutions, taking the synergy of both classical and Q-ACCs into account, will be quantified. We found that implementing a hybrid accelerometer onboard a future gravity mission improves the gravity solution by one to two orders in lower and higher degrees. In particular, the produced global gravity field maps show a drastic reduction in the instrumental contribution to the striping effect after introducing measurements from the hybrid accelerometers.
期刊介绍:
Marking AGU’s second new open access journal in the last 12 months, Earth and Space Science is the only journal that reflects the expansive range of science represented by AGU’s 62,000 members, including all of the Earth, planetary, and space sciences, and related fields in environmental science, geoengineering, space engineering, and biogeochemistry.