L. Olifer, P. Manavalan, D. Headrick, S. Palmers, B. Harbarenko, J. Cai, J. Fourie, O. Bauer, I. R. Mann
{"title":"Low-Cost Monitoring of Energetic Particle Precipitation: Weather Balloon-Borne Timepix Measurements During the May 2024 Superstorm","authors":"L. Olifer, P. Manavalan, D. Headrick, S. Palmers, B. Harbarenko, J. Cai, J. Fourie, O. Bauer, I. R. Mann","doi":"10.1029/2024JA033626","DOIUrl":null,"url":null,"abstract":"<p>Understanding energetic electron precipitation is crucial for accurate space weather modeling and forecasting, impacting the Earth's upper atmosphere and human infrastructure. This study presents a low-cost, low-mass, and low-power solution for high-fidelity analysis of electron precipitation events by measuring the resulting bremsstrahlung X-ray emissions. Specifically, we report on results from the flight of a radiation detector payload that utilized a silicon pixel read-out “Timepix” chip, and its successful utilization onboard a “burster” weather balloon. We launched this payload during the May 2024 superstorm, capturing high-resolution measurements of both background cosmic ray radiation as well as storm-time energetic electron precipitation. We further developed particle and radiation detection algorithms to separate bremsstrahlung X-rays from other particle species in the pixel-resolved trajectories as seen in the Timepix detector. The measurements revealed a distinctive four-peak structure in X-ray flux, corresponding to periodic four-minute-long bursts of energetic electron precipitation between 21:20 and 21:40 UT. This precipitation was also observed by a riometer station close to the balloon launch path, further validating balloon measurements and the developed X-ray identification algorithm. The clear periodic structure of the measured precipitation is likely caused by modulation of the electron losses from the radiation belt by harmonic Pc5 ultra-low frequency waves, observed contemporaneously on the ground. The study underscores the potential of compact, low-cost payloads for advancing our understanding of space weather. Specifically, we envision a potential use of such Timepix-based detectors in space science, for example, on sounding rockets or nano-, micro-, and small satellite platforms.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JA033626","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033626","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding energetic electron precipitation is crucial for accurate space weather modeling and forecasting, impacting the Earth's upper atmosphere and human infrastructure. This study presents a low-cost, low-mass, and low-power solution for high-fidelity analysis of electron precipitation events by measuring the resulting bremsstrahlung X-ray emissions. Specifically, we report on results from the flight of a radiation detector payload that utilized a silicon pixel read-out “Timepix” chip, and its successful utilization onboard a “burster” weather balloon. We launched this payload during the May 2024 superstorm, capturing high-resolution measurements of both background cosmic ray radiation as well as storm-time energetic electron precipitation. We further developed particle and radiation detection algorithms to separate bremsstrahlung X-rays from other particle species in the pixel-resolved trajectories as seen in the Timepix detector. The measurements revealed a distinctive four-peak structure in X-ray flux, corresponding to periodic four-minute-long bursts of energetic electron precipitation between 21:20 and 21:40 UT. This precipitation was also observed by a riometer station close to the balloon launch path, further validating balloon measurements and the developed X-ray identification algorithm. The clear periodic structure of the measured precipitation is likely caused by modulation of the electron losses from the radiation belt by harmonic Pc5 ultra-low frequency waves, observed contemporaneously on the ground. The study underscores the potential of compact, low-cost payloads for advancing our understanding of space weather. Specifically, we envision a potential use of such Timepix-based detectors in space science, for example, on sounding rockets or nano-, micro-, and small satellite platforms.