Bianca C. Pachane, Bess Carlson, Suzanne E. Queen, Heloisa S. Selistre-de-Araujo, Kenneth W. Witwer
{"title":"Exploring the Adhesion Properties of Extracellular Vesicles for Functional Assays","authors":"Bianca C. Pachane, Bess Carlson, Suzanne E. Queen, Heloisa S. Selistre-de-Araujo, Kenneth W. Witwer","doi":"10.1002/jex2.70042","DOIUrl":null,"url":null,"abstract":"<p>The ‛stickiness’ of extracellular vesicles (EVs) can pose challenges for EV processing and storage, but adhesive properties may also be exploited to immobilise EVs directly on surfaces for various measurement techniques, including super-resolution microscopy (SRM). Direct adhesion to surfaces may allow the examination of broader populations of EVs than molecular affinity approaches, which can also involve specialised, expensive affinity reagents. Here, we report on the interaction of EVs with borosilicate glass and quartz coverslips and on the effects of pre-coating coverslips with poly-L-lysine (PLL), a reagent commonly used to facilitate interactions between negatively charged surfaces of cells and amorphous surfaces. Additionally, we compared two mounting media conditions for SRM imaging and used immobilised EVs for a B-cell interaction test. Our findings suggest that borosilicate glass coverslips immobilise EVs better than quartz glass coverslips. We also found that PLL is not strictly required for EV retention but contributes to the uniform distribution of EVs on borosilicate glass coverslips. Overall, these findings suggest that standard lab materials like borosilicate glass coverslips, with or without PLL, can be effectively used for the immobilisation of EVs in specific imaging techniques.</p>","PeriodicalId":73747,"journal":{"name":"Journal of extracellular biology","volume":"4 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jex2.70042","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of extracellular biology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jex2.70042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The ‛stickiness’ of extracellular vesicles (EVs) can pose challenges for EV processing and storage, but adhesive properties may also be exploited to immobilise EVs directly on surfaces for various measurement techniques, including super-resolution microscopy (SRM). Direct adhesion to surfaces may allow the examination of broader populations of EVs than molecular affinity approaches, which can also involve specialised, expensive affinity reagents. Here, we report on the interaction of EVs with borosilicate glass and quartz coverslips and on the effects of pre-coating coverslips with poly-L-lysine (PLL), a reagent commonly used to facilitate interactions between negatively charged surfaces of cells and amorphous surfaces. Additionally, we compared two mounting media conditions for SRM imaging and used immobilised EVs for a B-cell interaction test. Our findings suggest that borosilicate glass coverslips immobilise EVs better than quartz glass coverslips. We also found that PLL is not strictly required for EV retention but contributes to the uniform distribution of EVs on borosilicate glass coverslips. Overall, these findings suggest that standard lab materials like borosilicate glass coverslips, with or without PLL, can be effectively used for the immobilisation of EVs in specific imaging techniques.