{"title":"Carboplatin Co-loaded 5-Fluorouracil Nanoparticles Conjugated with Trastuzumab for Targeted Therapy in HER2+ Heterogeneity Breast Cancer","authors":"Akshay Kumar Lunawat, Debanjan Mukherjee, Riya Shivgotra, Sarjana Raikwar, Ankit Awasthi, Amrinder Singh, Shamsher Singh, Shivani Chandel, Subheet Kumar Jain, Shubham Thakur","doi":"10.1208/s12249-025-03107-6","DOIUrl":null,"url":null,"abstract":"<div><p>Breast cancer, the second-most common cause of cancer-related deaths among women, remains a significant global health challenge. This study focuses on developing trastuzumab (TmAb)-functionalized chitosan nanoparticles (CS-NPs) co-loaded with carboplatin and 5-fluorouracil (5-FU) for targeted treatment of HER2-positive breast cancer. The NPs were prepared via the ionic gelation method, optimized using Design of Experimentation (DoE), and characterized for particle size, zeta potential, PDI, and entrapment efficiency. TmAb conjugation was achieved using NHS and EDC, and further characterization included TEM, syringeability, hemolytic toxicity, <i>in-vitro</i> release, <i>ex-vivo</i> cell line study, and <i>in-vivo</i> anti-cancer activity using the Ehrlich ascites carcinoma (EAC) model. The <i>in-vitro</i> release studies indicated enhanced drug release at pH 5.5 over 32 h and showed first-order kinetics. The TmAb-conjugated NPs demonstrated specificity and targeting in the SK-BR-3 cell line and significant anti-cancer activity in the EAC model, with the highest tumor inhibition rate of 85.19% compared to 58.12% for the drug solution. These findings highlight the potential of TmAb-conjugated NPs for targeted breast cancer therapy, offering improved drug delivery and therapeutic efficacy, paving the way for future clinical applications to reduce side effects and overcome the limitations of conventional chemotherapy.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSciTech","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1208/s12249-025-03107-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer, the second-most common cause of cancer-related deaths among women, remains a significant global health challenge. This study focuses on developing trastuzumab (TmAb)-functionalized chitosan nanoparticles (CS-NPs) co-loaded with carboplatin and 5-fluorouracil (5-FU) for targeted treatment of HER2-positive breast cancer. The NPs were prepared via the ionic gelation method, optimized using Design of Experimentation (DoE), and characterized for particle size, zeta potential, PDI, and entrapment efficiency. TmAb conjugation was achieved using NHS and EDC, and further characterization included TEM, syringeability, hemolytic toxicity, in-vitro release, ex-vivo cell line study, and in-vivo anti-cancer activity using the Ehrlich ascites carcinoma (EAC) model. The in-vitro release studies indicated enhanced drug release at pH 5.5 over 32 h and showed first-order kinetics. The TmAb-conjugated NPs demonstrated specificity and targeting in the SK-BR-3 cell line and significant anti-cancer activity in the EAC model, with the highest tumor inhibition rate of 85.19% compared to 58.12% for the drug solution. These findings highlight the potential of TmAb-conjugated NPs for targeted breast cancer therapy, offering improved drug delivery and therapeutic efficacy, paving the way for future clinical applications to reduce side effects and overcome the limitations of conventional chemotherapy.
期刊介绍:
AAPS PharmSciTech is a peer-reviewed, online-only journal committed to serving those pharmaceutical scientists and engineers interested in the research, development, and evaluation of pharmaceutical dosage forms and delivery systems, including drugs derived from biotechnology and the manufacturing science pertaining to the commercialization of such dosage forms. Because of its electronic nature, AAPS PharmSciTech aspires to utilize evolving electronic technology to enable faster and diverse mechanisms of information delivery to its readership. Submission of uninvited expert reviews and research articles are welcomed.