Scale-invariant total decay width Γ(H → \( b\overline{b} \)) using the novel method of characteristic operator

IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy
Jiang Yan, Xing-Gang Wu, Jian-Ming Shen, Xu-Dong Huang, Zhi-Fei Wu
{"title":"Scale-invariant total decay width Γ(H → \\( b\\overline{b} \\)) using the novel method of characteristic operator","authors":"Jiang Yan,&nbsp;Xing-Gang Wu,&nbsp;Jian-Ming Shen,&nbsp;Xu-Dong Huang,&nbsp;Zhi-Fei Wu","doi":"10.1007/JHEP04(2025)184","DOIUrl":null,"url":null,"abstract":"<p>According to the renormalization group invariance, any physical observable should be invariant under different renormalization schemes and scales. Nevertheless, a fixed-order pQCD approximant cannot inherently satisfy this requirement, giving rise to the conventional scheme-and-scale ambiguities. The principle of maximum conformality (PMC) offers a process-independent approach to address these two types of ambiguities. In practice, it is necessary to handle the <i>n</i><sub><i>f</i></sub> -terms in the pQCD series with caution to obtain accurate PMC predictions. In this paper, a novel method via using the characteristic operator (CO) <span>\\( {\\hat{D}}_{n_{\\gamma },{n}_{\\beta }} \\)</span> is proposed to extend the applicability of PMC, which is a theoretical generalization of previous PMC single-scale setting approach. The CO framework not only streamlines derivations for complex scenarios, yielding simplified procedures and more compact expressions, but also achieves a scheme-and-scale invariant pQCD series by fixing the correct effective magnitude of <i>α</i><sub><i>s</i></sub> and the running mass simultaneously. Both are well matched with the expansion coefficients of the series, leading to the wanted scheme-and-scale invariant conformal series. As an example, we show the achievement of scale-invariant N<sup>4</sup>LO total decay width Γ(<i>H →</i> <span>\\( b\\overline{b} \\)</span>) under the <span>\\( \\overline{\\textrm{MS}} \\)</span>-scheme. Using the CO framework, its effective coupling <i>α</i><sub><i>s</i></sub>(<i>Q</i><sub>*</sub>) and effective <i>b</i>-quark <span>\\( \\overline{\\textrm{MS}} \\)</span>-mass <span>\\( {\\overline{m}}_b\\left({Q}_{\\ast}\\right) \\)</span> are determined by absorbing all non-conformal {<i>β</i><sub><i>i</i></sub>}-terms from the renormalization group equations for either <i>α</i><sub><i>s</i></sub> or <span>\\( {\\overline{m}}_b \\)</span> simultaneously. The PMC scale is fixed up to N<sup>3</sup>LL-accuracy, <i>Q</i><sub>*</sub> = 55<i>.</i>2916 GeV and a scale-invariant total decay width is obtained, <span>\\( \\Gamma \\left(H\\to b\\overline{b}\\right)={2.3819}_{-0.0231}^{+0.0230} \\)</span> MeV, whose errors are squared averages of the ones associated with ∆<i>α</i><sub><i>s</i></sub>(<i>M</i><sub><i>Z</i></sub>) = ±0<i>.</i>0009, ∆<i>M</i><sub><i>H</i></sub> = 0<i>.</i>11 GeV, <span>\\( \\Delta {\\overline{m}}_b\\left({\\overline{m}}_b\\right) \\)</span> = ±0<i>.</i>007 GeV, and the uncalculated N<sup>5</sup>LO contributions ∆Γ = ±0<i>.</i>0001 MeV predicted via Bayesian analysis with the degree-of-belief DoB = 95<i>.</i>5%.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 4","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP04(2025)184.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP04(2025)184","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

According to the renormalization group invariance, any physical observable should be invariant under different renormalization schemes and scales. Nevertheless, a fixed-order pQCD approximant cannot inherently satisfy this requirement, giving rise to the conventional scheme-and-scale ambiguities. The principle of maximum conformality (PMC) offers a process-independent approach to address these two types of ambiguities. In practice, it is necessary to handle the nf -terms in the pQCD series with caution to obtain accurate PMC predictions. In this paper, a novel method via using the characteristic operator (CO) \( {\hat{D}}_{n_{\gamma },{n}_{\beta }} \) is proposed to extend the applicability of PMC, which is a theoretical generalization of previous PMC single-scale setting approach. The CO framework not only streamlines derivations for complex scenarios, yielding simplified procedures and more compact expressions, but also achieves a scheme-and-scale invariant pQCD series by fixing the correct effective magnitude of αs and the running mass simultaneously. Both are well matched with the expansion coefficients of the series, leading to the wanted scheme-and-scale invariant conformal series. As an example, we show the achievement of scale-invariant N4LO total decay width Γ(H → \( b\overline{b} \)) under the \( \overline{\textrm{MS}} \)-scheme. Using the CO framework, its effective coupling αs(Q*) and effective b-quark \( \overline{\textrm{MS}} \)-mass \( {\overline{m}}_b\left({Q}_{\ast}\right) \) are determined by absorbing all non-conformal {βi}-terms from the renormalization group equations for either αs or \( {\overline{m}}_b \) simultaneously. The PMC scale is fixed up to N3LL-accuracy, Q* = 55.2916 GeV and a scale-invariant total decay width is obtained, \( \Gamma \left(H\to b\overline{b}\right)={2.3819}_{-0.0231}^{+0.0230} \) MeV, whose errors are squared averages of the ones associated with ∆αs(MZ) = ±0.0009, ∆MH = 0.11 GeV, \( \Delta {\overline{m}}_b\left({\overline{m}}_b\right) \) = ±0.007 GeV, and the uncalculated N5LO contributions ∆Γ = ±0.0001 MeV predicted via Bayesian analysis with the degree-of-belief DoB = 95.5%.

尺度不变的总衰减宽度Γ(H→\( b\overline{b} \))利用特征算子的新方法
根据重整化群不变性,任何物理观测值在不同重整化方案和尺度下都是不变性的。然而,固定阶的pQCD近似不能固有地满足这一要求,从而产生传统的方案和规模模糊性。最大一致性原则(PMC)提供了一种与过程无关的方法来处理这两种类型的歧义。在实践中,有必要谨慎处理pQCD系列中的nf项,以获得准确的PMC预测。本文提出了一种利用特征算子(CO) \( {\hat{D}}_{n_{\gamma },{n}_{\beta }} \)扩展PMC的适用性的新方法,该方法是对以往PMC单尺度设定方法的理论推广。CO框架不仅简化了复杂情况下的推导,简化了程序,表达式更加紧凑,而且通过同时确定αs的正确有效量级和运行质量,实现了方案和尺度不变的pQCD序列。两者都能很好地匹配级数的展开系数,从而得到所需的格式尺度不变共形级数。作为一个例子,我们展示了在\( \overline{\textrm{MS}} \) -方案下实现尺度不变的N4LO总衰减宽度Γ(H→\( b\overline{b} \))。利用CO框架,通过同时吸收αs或\( {\overline{m}}_b \)重整化群方程中的所有非共形β项,确定了其有效耦合αs(Q*)和有效b夸克\( \overline{\textrm{MS}} \) -质量{}\( {\overline{m}}_b\left({Q}_{\ast}\right) \)。将PMC尺度固定到n3l -精度,Q* = 55.2916 GeV,得到一个尺度不变的总衰减宽度\( \Gamma \left(H\to b\overline{b}\right)={2.3819}_{-0.0231}^{+0.0230} \) MeV,其误差为∆αs(MZ) =±0.0009、∆MH = 0.11 GeV、\( \Delta {\overline{m}}_b\left({\overline{m}}_b\right) \) =±0.007 GeV和未计算的N5LO贡献(∆Γ =±0.0001 MeV)相关误差的平方平均值,置信度DoB = 95.5%.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics 物理-物理:粒子与场物理
CiteScore
10.30
自引率
46.30%
发文量
2107
审稿时长
1.5 months
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信