The Strong Data Processing Inequality Under the Heat Flow

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Bo'az Klartag;Or Ordentlich
{"title":"The Strong Data Processing Inequality Under the Heat Flow","authors":"Bo'az Klartag;Or Ordentlich","doi":"10.1109/TIT.2025.3548961","DOIUrl":null,"url":null,"abstract":"Let <inline-formula> <tex-math>$\\nu $ </tex-math></inline-formula> and <inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula> be probability distributions on <inline-formula> <tex-math>$\\mathbb {R}^{n}$ </tex-math></inline-formula>, and <inline-formula> <tex-math>$\\nu _{s},\\mu _{s}$ </tex-math></inline-formula> be their evolution under the heat flow, that is, the probability distributions resulting from convolving their density with the density of an isotropic Gaussian random vector with variance <italic>s</i> in each entry. This paper studies the rate of decay of <inline-formula> <tex-math>$s\\mapsto D(\\nu _{s}\\|\\mu _{s})$ </tex-math></inline-formula> for various divergences, including the <inline-formula> <tex-math>$\\chi ^{2}$ </tex-math></inline-formula> and Kullback-Leibler (KL) divergences. We prove upper and lower bounds on the strong data-processing inequality (SDPI) coefficients corresponding to the source <inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula> and the Gaussian channel. We also prove generalizations of de Bruijn’s identity, and Costa’s result on the concavity in <italic>s</i> of the differential entropy of <inline-formula> <tex-math>$\\nu _{s}$ </tex-math></inline-formula>. As a byproduct of our analysis, we obtain new lower bounds on the mutual information between <italic>X</i> and <inline-formula> <tex-math>$Y=X+\\sqrt {s} Z$ </tex-math></inline-formula>, where <italic>Z</i> is a standard Gaussian vector in <inline-formula> <tex-math>$\\mathbb {R}^{n}$ </tex-math></inline-formula>, independent of <italic>X</i>, and on the minimum mean-square error (MMSE) in estimating <italic>X</i> from <italic>Y</i>, in terms of the Poincaré constant of <italic>X</i>.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 5","pages":"3317-3333"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10915701/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $\nu $ and $\mu $ be probability distributions on $\mathbb {R}^{n}$ , and $\nu _{s},\mu _{s}$ be their evolution under the heat flow, that is, the probability distributions resulting from convolving their density with the density of an isotropic Gaussian random vector with variance s in each entry. This paper studies the rate of decay of $s\mapsto D(\nu _{s}\|\mu _{s})$ for various divergences, including the $\chi ^{2}$ and Kullback-Leibler (KL) divergences. We prove upper and lower bounds on the strong data-processing inequality (SDPI) coefficients corresponding to the source $\mu $ and the Gaussian channel. We also prove generalizations of de Bruijn’s identity, and Costa’s result on the concavity in s of the differential entropy of $\nu _{s}$ . As a byproduct of our analysis, we obtain new lower bounds on the mutual information between X and $Y=X+\sqrt {s} Z$ , where Z is a standard Gaussian vector in $\mathbb {R}^{n}$ , independent of X, and on the minimum mean-square error (MMSE) in estimating X from Y, in terms of the Poincaré constant of X.
热流下的强数据处理不等式
设$\nu $和$\mu $为$\mathbb {R}^{n}$上的概率分布,$\nu _{s},\mu _{s}$为它们在热流作用下的演化,即它们的密度与各入口方差为s的各向同性高斯随机向量的密度卷积得到的概率分布。本文研究了各种散度(包括$\chi ^{2}$和Kullback-Leibler (KL)散度)的$s\mapsto D(\nu _{s}\|\mu _{s})$衰减率。我们证明了源$\mu $和高斯信道对应的强数据处理不等式(SDPI)系数的上界和下界。我们还证明了de Bruijn恒等式的推广,以及Costa关于$\nu _{s}$的微分熵在s中的凹性的结果。作为我们分析的副产品,我们获得了X和$Y=X+\sqrt {s} Z$之间互信息的新下界,其中Z是$\mathbb {R}^{n}$中独立于X的标准高斯向量,以及根据X的poincar常数从Y估计X的最小均方误差(MMSE)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信