{"title":"Optimization of Magnetic Anomaly Detection Under 1/fα Noise Based on Karhunen–Loève Expansion and Frequency Characteristic Function","authors":"Wenqi Li;Zongtan Zhou;Hongxin Li;Jingsheng Tang;Ming Xu","doi":"10.1109/TIM.2025.3557098","DOIUrl":null,"url":null,"abstract":"The primary challenge facing the field of magnetic anomaly detection (MAD) currently lies in how to effectively improve detection performance in low signal-to-noise ratio (SNR) and real <inline-formula> <tex-math>$1/f^{\\alpha } $ </tex-math></inline-formula> noise scenarios. To overcome these difficulties, this article proposes an optimized MAD method based on a random forest (RF) classifier. This method utilizes an orthonormal basis function (OBF) detector based on Karhunen-Loève expansion (KLE) to extract energy from the raw data as time-domain (TD) features. Meanwhile, the spectral information derived from low-pass filtering (LPF) and fast Fourier transform (FFT) serves as frequency-domain (FD) features of the raw data. The cutoff frequency of the LPF is determined based on a frequency characteristic function that defines the high-frequency boundary of the target signal. Combining these time and FD features, a simulated dataset is constructed for the training and testing of the detection model. Subsequently, the trained model undergoes further validation and evaluation on semi-real and real datasets built upon measured data from a tunneling magnetoresistance (TMR) magnetic sensor. Through a series of simulations, we demonstrate that our designed method exhibits superior detection capability and stronger generalization ability compared to other similar OBF-based methods. Furthermore, the superiority of this method is also confirmed by experimental results based on measured data.","PeriodicalId":13341,"journal":{"name":"IEEE Transactions on Instrumentation and Measurement","volume":"74 ","pages":"1-13"},"PeriodicalIF":5.6000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Instrumentation and Measurement","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10969525/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The primary challenge facing the field of magnetic anomaly detection (MAD) currently lies in how to effectively improve detection performance in low signal-to-noise ratio (SNR) and real $1/f^{\alpha } $ noise scenarios. To overcome these difficulties, this article proposes an optimized MAD method based on a random forest (RF) classifier. This method utilizes an orthonormal basis function (OBF) detector based on Karhunen-Loève expansion (KLE) to extract energy from the raw data as time-domain (TD) features. Meanwhile, the spectral information derived from low-pass filtering (LPF) and fast Fourier transform (FFT) serves as frequency-domain (FD) features of the raw data. The cutoff frequency of the LPF is determined based on a frequency characteristic function that defines the high-frequency boundary of the target signal. Combining these time and FD features, a simulated dataset is constructed for the training and testing of the detection model. Subsequently, the trained model undergoes further validation and evaluation on semi-real and real datasets built upon measured data from a tunneling magnetoresistance (TMR) magnetic sensor. Through a series of simulations, we demonstrate that our designed method exhibits superior detection capability and stronger generalization ability compared to other similar OBF-based methods. Furthermore, the superiority of this method is also confirmed by experimental results based on measured data.
期刊介绍:
Papers are sought that address innovative solutions to the development and use of electrical and electronic instruments and equipment to measure, monitor and/or record physical phenomena for the purpose of advancing measurement science, methods, functionality and applications. The scope of these papers may encompass: (1) theory, methodology, and practice of measurement; (2) design, development and evaluation of instrumentation and measurement systems and components used in generating, acquiring, conditioning and processing signals; (3) analysis, representation, display, and preservation of the information obtained from a set of measurements; and (4) scientific and technical support to establishment and maintenance of technical standards in the field of Instrumentation and Measurement.