Combinatorial Alphabet-Dependent Bounds for Insdel Codes

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Xiangliang Kong;Itzhak Tamo;Hengjia Wei
{"title":"Combinatorial Alphabet-Dependent Bounds for Insdel Codes","authors":"Xiangliang Kong;Itzhak Tamo;Hengjia Wei","doi":"10.1109/TIT.2025.3545061","DOIUrl":null,"url":null,"abstract":"Error-correcting codes resilient to synchronization errors such as insertions and deletions are known as insdel codes. In this paper, we present several new combinatorial upper and lower bounds on the maximum size of <italic>q</i>-ary insdel codes. Our main upper bound is a sphere-packing bound obtained by solving a linear programming (LP) problem. It improves upon previous results for cases when the distance <italic>d</i> or the alphabet size <italic>q</i> is large. Our first lower bound is derived from a connection between insdel codes and matchings in special hypergraphs. This lower bound, together with our upper bound, shows that for fixed block length <italic>n</i> and edit distance <italic>d</i>, when <italic>q</i> is sufficiently large, the maximum size of insdel codes is <inline-formula> <tex-math>$ \\frac {q^{n-\\frac {d}{2}+1}}{\\binom {n}{\\frac {d}{2}-1}}(1 \\pm o(1))$ </tex-math></inline-formula>. The second lower bound refines Alon et al.’s recent logarithmic improvement on Levenshtein’s GV-type bound and extends its applicability to large <italic>q</i> and <italic>d</i>.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 5","pages":"3544-3559"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10902432/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Error-correcting codes resilient to synchronization errors such as insertions and deletions are known as insdel codes. In this paper, we present several new combinatorial upper and lower bounds on the maximum size of q-ary insdel codes. Our main upper bound is a sphere-packing bound obtained by solving a linear programming (LP) problem. It improves upon previous results for cases when the distance d or the alphabet size q is large. Our first lower bound is derived from a connection between insdel codes and matchings in special hypergraphs. This lower bound, together with our upper bound, shows that for fixed block length n and edit distance d, when q is sufficiently large, the maximum size of insdel codes is $ \frac {q^{n-\frac {d}{2}+1}}{\binom {n}{\frac {d}{2}-1}}(1 \pm o(1))$ . The second lower bound refines Alon et al.’s recent logarithmic improvement on Levenshtein’s GV-type bound and extends its applicability to large q and d.
Insdel码的组合依赖于字母的界
对同步错误(如插入和删除)具有弹性的纠错代码称为indel代码。本文给出了关于q元内码最大尺寸的几个新的组合上界和下界。我们的主要上界是通过求解线性规划(LP)问题得到的球填充界。对于距离d或字母大小q较大的情况,它改进了以前的结果。我们的第一个下界是由内部代码和特殊超图中的匹配之间的连接导出的。这个下界和我们的上界表明,对于固定的块长度n和编辑距离d,当q足够大时,indel代码的最大大小为$ \frac {q^{n-\frac {d}{2}+1}}{\binom {n}{\frac {d}{2}-1}}(1 \pm o(1))$。第二个下界改进了Alon等人最近对Levenshtein的gv型界的对数改进,并扩展了其对大q和d的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信