Bashar Huleihel;Oron Sabag;Ziv Aharoni;Haim H. Permuter
{"title":"The Duality Upper Bound for Finite-State Channels With Feedback","authors":"Bashar Huleihel;Oron Sabag;Ziv Aharoni;Haim H. Permuter","doi":"10.1109/TIT.2025.3545688","DOIUrl":null,"url":null,"abstract":"This paper investigates the capacity of finite-state channels (FSCs) with feedback. We derive an upper bound on the feedback capacity of FSCs by extending the duality upper bound method from mutual information to the case of directed information. The upper bound is expressed as a multi-letter expression that depends on a test distribution on the sequence of channel outputs. For any FSC, we show that if the test distribution is structured on a <italic>Q</i>-graph, the upper bound can be formulated as a Markov decision process (MDP) whose state being a belief on the channel state. In the case of FSCs and states that are either unifilar or have a finite memory, the MDP state simplifies to take values in a finite set. Consequently, the MDP consists of a finite number of states, actions, and disturbances. This finite nature of the MDP is of significant importance, as it ensures that dynamic programming algorithms can solve the associated Bellman equation to establish analytical upper bounds, even for channels with large alphabets. We demonstrate the simplicity of computing bounds by establishing the capacity of a broad family of Noisy Output is the State (NOST) channels as a simple closed-form analytical expression. Furthermore, we introduce novel, nearly optimal analytical upper bounds on the capacity of the Noisy Ising channel.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 5","pages":"3255-3270"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10902637/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the capacity of finite-state channels (FSCs) with feedback. We derive an upper bound on the feedback capacity of FSCs by extending the duality upper bound method from mutual information to the case of directed information. The upper bound is expressed as a multi-letter expression that depends on a test distribution on the sequence of channel outputs. For any FSC, we show that if the test distribution is structured on a Q-graph, the upper bound can be formulated as a Markov decision process (MDP) whose state being a belief on the channel state. In the case of FSCs and states that are either unifilar or have a finite memory, the MDP state simplifies to take values in a finite set. Consequently, the MDP consists of a finite number of states, actions, and disturbances. This finite nature of the MDP is of significant importance, as it ensures that dynamic programming algorithms can solve the associated Bellman equation to establish analytical upper bounds, even for channels with large alphabets. We demonstrate the simplicity of computing bounds by establishing the capacity of a broad family of Noisy Output is the State (NOST) channels as a simple closed-form analytical expression. Furthermore, we introduce novel, nearly optimal analytical upper bounds on the capacity of the Noisy Ising channel.
期刊介绍:
The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.