Faster List Decoding of AG Codes

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Peter Beelen;Vincent Neiger
{"title":"Faster List Decoding of AG Codes","authors":"Peter Beelen;Vincent Neiger","doi":"10.1109/TIT.2025.3550750","DOIUrl":null,"url":null,"abstract":"In this article, we present a fast algorithm performing an instance of the Guruswami-Sudan list decoder for algebraic geometry codes. We show that any such code can be decoded in <inline-formula> <tex-math>$\\tilde {\\mathcal {O}} (s^{2}\\ell ^{\\omega -1}\\mu ^{\\omega -1}(n+g) + \\ell ^{\\omega } \\mu ^{\\omega })$ </tex-math></inline-formula> operations in the underlying finite field, where <italic>n</i> is the code length, <italic>g</i> is the genus of the function field used to construct the code, <italic>s</i> is the multiplicity parameter, <inline-formula> <tex-math>$\\ell $ </tex-math></inline-formula> is the designed list size and <inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula> is the smallest positive element in the Weierstrass semigroup of some chosen place.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 5","pages":"3397-3408"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10926896/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we present a fast algorithm performing an instance of the Guruswami-Sudan list decoder for algebraic geometry codes. We show that any such code can be decoded in $\tilde {\mathcal {O}} (s^{2}\ell ^{\omega -1}\mu ^{\omega -1}(n+g) + \ell ^{\omega } \mu ^{\omega })$ operations in the underlying finite field, where n is the code length, g is the genus of the function field used to construct the code, s is the multiplicity parameter, $\ell $ is the designed list size and $\mu $ is the smallest positive element in the Weierstrass semigroup of some chosen place.
更快的 AG 代码列表解码
在本文中,我们提出了一种快速算法,用于执行代数几何码的Guruswami-Sudan列表解码器实例。我们证明了任何这样的码都可以在有限域的$\tilde {\mathcal {O}} (s^{2}\ell ^{\omega -1}\mu ^{\omega -1}(n+g) + \ell ^{\omega } \mu ^{\omega })$运算中解码,其中n为码长,g为构造码的函数域的属,s为多重性参数,$\ell $为设计列表大小,$\mu $为选定位置的Weierstrass半群中的最小正元素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信