Binary Error-Correcting Codes With Minimal Noiseless Feedback

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Meghal Gupta;Venkatesan Guruswami;Rachel Yun Zhang
{"title":"Binary Error-Correcting Codes With Minimal Noiseless Feedback","authors":"Meghal Gupta;Venkatesan Guruswami;Rachel Yun Zhang","doi":"10.1109/TIT.2025.3545097","DOIUrl":null,"url":null,"abstract":"In the setting of error-correcting codes with feedback, Alice wishes to communicate a k-bit message x to Bob by sending a sequence of bits over a channel while noiselessly receiving feedback from Bob. It has been long known (Berlekamp, 1964) that in this model, Bob can still correctly determine x even if <inline-formula> <tex-math>$\\approx \\frac {1}{3}$ </tex-math></inline-formula> of Alice’s bits are flipped adversarially. This improves upon the classical setting without feedback, where recovery is not possible for error fractions exceeding <inline-formula> <tex-math>$\\frac {1}{4}$ </tex-math></inline-formula>. In the corresponding setting of erasures rather than bit flips, feedback improves the error resilience from <inline-formula> <tex-math>$\\frac {1}{2}-\\epsilon $ </tex-math></inline-formula> to <inline-formula> <tex-math>$1-\\epsilon $ </tex-math></inline-formula> for any <inline-formula> <tex-math>$\\epsilon \\gt 0$ </tex-math></inline-formula>. The original feedback setting assumes that after transmitting each bit, Alice knows (via feedback) what bit Bob received. In this work, our focus in on the limited feedback model, where Bob is only allowed to send a few bits at a small number of pre-designated points in the protocol. For any desired <inline-formula> <tex-math>$\\epsilon \\gt 0$ </tex-math></inline-formula>, we construct a coding scheme that tolerates a <inline-formula> <tex-math>$ 1/3-\\epsilon $ </tex-math></inline-formula> fraction of bit flips (respectively a <inline-formula> <tex-math>$1-\\epsilon $ </tex-math></inline-formula> fraction of erasures) relying only on <inline-formula> <tex-math>$O_{\\epsilon } (\\log k)$ </tex-math></inline-formula> bits of feedback from Bob sent in a fixed <inline-formula> <tex-math>$O_{\\epsilon } (1)$ </tex-math></inline-formula> number of rounds. We complement this with a matching lower bound showing that <inline-formula> <tex-math>$\\Omega (\\log k)$ </tex-math></inline-formula> bits of feedback are necessary to recover from an error fraction exceeding <inline-formula> <tex-math>$1/4$ </tex-math></inline-formula> (respectively <inline-formula> <tex-math>$1/2$ </tex-math></inline-formula> for erasures), and for schemes resilient to a <inline-formula> <tex-math>$1/3-\\epsilon $ </tex-math></inline-formula> fraction of bit flips (respectively a <inline-formula> <tex-math>$1-\\epsilon $ </tex-math></inline-formula> fraction of erasures), the number of rounds must grow as <inline-formula> <tex-math>$\\epsilon \\to 0$ </tex-math></inline-formula>.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 5","pages":"3424-3446"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10919150/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In the setting of error-correcting codes with feedback, Alice wishes to communicate a k-bit message x to Bob by sending a sequence of bits over a channel while noiselessly receiving feedback from Bob. It has been long known (Berlekamp, 1964) that in this model, Bob can still correctly determine x even if $\approx \frac {1}{3}$ of Alice’s bits are flipped adversarially. This improves upon the classical setting without feedback, where recovery is not possible for error fractions exceeding $\frac {1}{4}$ . In the corresponding setting of erasures rather than bit flips, feedback improves the error resilience from $\frac {1}{2}-\epsilon $ to $1-\epsilon $ for any $\epsilon \gt 0$ . The original feedback setting assumes that after transmitting each bit, Alice knows (via feedback) what bit Bob received. In this work, our focus in on the limited feedback model, where Bob is only allowed to send a few bits at a small number of pre-designated points in the protocol. For any desired $\epsilon \gt 0$ , we construct a coding scheme that tolerates a $ 1/3-\epsilon $ fraction of bit flips (respectively a $1-\epsilon $ fraction of erasures) relying only on $O_{\epsilon } (\log k)$ bits of feedback from Bob sent in a fixed $O_{\epsilon } (1)$ number of rounds. We complement this with a matching lower bound showing that $\Omega (\log k)$ bits of feedback are necessary to recover from an error fraction exceeding $1/4$ (respectively $1/2$ for erasures), and for schemes resilient to a $1/3-\epsilon $ fraction of bit flips (respectively a $1-\epsilon $ fraction of erasures), the number of rounds must grow as $\epsilon \to 0$ .
具有最小噪声反馈的二进制纠错码
在带有反馈的纠错码设置中,Alice希望通过信道发送一串比特,同时无声地接收Bob的反馈,从而将k位的消息x传递给Bob。人们早就知道(Berlekamp, 1964),在这个模型中,即使Alice的$\approx \frac {1}{3}$位被反向翻转,Bob仍然可以正确地确定x。这改进了没有反馈的经典设置,其中错误分数超过$\frac {1}{4}$是不可能恢复的。在相应的擦除而不是位翻转设置中,反馈提高了从$\frac {1}{2}-\epsilon $到$1-\epsilon $的任何$\epsilon \gt 0$的容错性。最初的反馈设置假设在发送每个比特后,Alice(通过反馈)知道Bob收到了什么比特。在这项工作中,我们的重点是有限反馈模型,其中Bob只允许在协议中预先指定的少数点上发送几个比特。对于任何期望的$\epsilon \gt 0$,我们构建了一个编码方案,该方案仅依赖于Bob在固定的$O_{\epsilon } (1)$轮数中发送的$O_{\epsilon } (\log k)$位反馈,它可以容忍$ 1/3-\epsilon $部分的位翻转(分别是$1-\epsilon $部分的擦除)。我们用一个匹配的下界来补充这一点,表明$\Omega (\log k)$位反馈对于从超过$1/4$的错误分数中恢复是必要的(分别为$1/2$对于擦除),并且对于能够恢复$1/3-\epsilon $位翻转分数(分别为$1-\epsilon $分数擦除)的方案,轮数必须增长为$\epsilon \to 0$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信