Ultrasensitive and selective detection of indigo carmine in soft drink: A facile electrochemical approach based on Zr-MOF@MWCNTs nanocomposite

IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, COATINGS & FILMS
Yu Xie , Wei Zhou , Jia-Wen Yin , Yi Li , Cheng-Ye Lai , Jin-Hao Lai , Zhi-Jie Zhu , Xiu-Guang Yi , Li-Min Liu , Kalle Salminen
{"title":"Ultrasensitive and selective detection of indigo carmine in soft drink: A facile electrochemical approach based on Zr-MOF@MWCNTs nanocomposite","authors":"Yu Xie ,&nbsp;Wei Zhou ,&nbsp;Jia-Wen Yin ,&nbsp;Yi Li ,&nbsp;Cheng-Ye Lai ,&nbsp;Jin-Hao Lai ,&nbsp;Zhi-Jie Zhu ,&nbsp;Xiu-Guang Yi ,&nbsp;Li-Min Liu ,&nbsp;Kalle Salminen","doi":"10.1016/j.diamond.2025.112366","DOIUrl":null,"url":null,"abstract":"<div><div>Indigo carmine (IC), a widely used synthetic dye, possess significant risks to human health due to its high toxicity, carcinogenicity, teratogenicity, and mutagenicity. Given its widespread use in food, beverages, and pharmaceuticals, excessive IC exposure can lead to severe health issues, including allergic reactions, gastrointestinal disturbances, and potential carcinogenic effects. Therefore, stringent monitoring of IC content in food is essential to ensure public health and safety. In this study, we developed a novel electrochemical sensor for IC detection by synthesizing a nanocomposite of zirconium-based metal-organic frameworks (Zr-MOF) and multi-walled carbon nanotubes (MWCNTs). The Zr-MOF@MWCNTs composite was characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), Fourier-transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The sensor leverages the synergistic combination of the electrocatalytic properties of Zr-MOF and the superior conductivity of MWCNTs, demonstrating rapid response, excellent selectivity, high sensitivity (4.484 μA μM<sup>-1</sup> cm<sup>-2</sup>), a broad detection range (0.005–30.0 μM), and a low limit of detection (LOD, 3.0 nM). The method showed good detection performance in both phosphate buffer solutions (PBS) and real beverage samples, achieving recoveries of 94.1 %–99.4 %. This study offers a promising approach for the rapid and accurate monitoring of IC in food products, contributing to improved food safety and public health.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"155 ","pages":"Article 112366"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diamond and Related Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925963525004236","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

Abstract

Indigo carmine (IC), a widely used synthetic dye, possess significant risks to human health due to its high toxicity, carcinogenicity, teratogenicity, and mutagenicity. Given its widespread use in food, beverages, and pharmaceuticals, excessive IC exposure can lead to severe health issues, including allergic reactions, gastrointestinal disturbances, and potential carcinogenic effects. Therefore, stringent monitoring of IC content in food is essential to ensure public health and safety. In this study, we developed a novel electrochemical sensor for IC detection by synthesizing a nanocomposite of zirconium-based metal-organic frameworks (Zr-MOF) and multi-walled carbon nanotubes (MWCNTs). The Zr-MOF@MWCNTs composite was characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), Fourier-transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The sensor leverages the synergistic combination of the electrocatalytic properties of Zr-MOF and the superior conductivity of MWCNTs, demonstrating rapid response, excellent selectivity, high sensitivity (4.484 μA μM-1 cm-2), a broad detection range (0.005–30.0 μM), and a low limit of detection (LOD, 3.0 nM). The method showed good detection performance in both phosphate buffer solutions (PBS) and real beverage samples, achieving recoveries of 94.1 %–99.4 %. This study offers a promising approach for the rapid and accurate monitoring of IC in food products, contributing to improved food safety and public health.

Abstract Image

超灵敏和选择性检测软饮料中的靛蓝胭脂红:基于Zr-MOF@MWCNTs纳米复合材料的简便电化学方法
靛蓝胭脂红(IC)是一种广泛使用的合成染料,由于其高毒性、致癌性、致畸性和诱变性,对人类健康具有重大风险。鉴于其在食品、饮料和药品中的广泛应用,过量接触IC会导致严重的健康问题,包括过敏反应、胃肠道紊乱和潜在的致癌作用。因此,严格监测食品中的IC含量对确保公众健康和安全至关重要。在这项研究中,我们通过合成锆基金属有机框架(Zr-MOF)和多壁碳纳米管(MWCNTs)的纳米复合材料,开发了一种用于IC检测的新型电化学传感器。通过扫描电镜(SEM)、透射电镜(TEM)、傅里叶变换红外光谱(FT-IR)和x射线光电子能谱(XPS)对Zr-MOF@MWCNTs复合材料进行了表征。该传感器充分利用了Zr-MOF的电催化性能和MWCNTs优异的导电性,具有响应速度快、选择性好、灵敏度高(4.484 μA μM-1 cm-2)、检测范围宽(0.005 ~ 30.0 μM)、检测限低(LOD 3.0 nM)等特点。该方法在磷酸缓冲液(PBS)和实际饮料样品中均具有良好的检测性能,回收率为94.1% ~ 99.4%。本研究为食品中IC的快速准确监测提供了一种有希望的方法,有助于改善食品安全和公众健康。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Diamond and Related Materials
Diamond and Related Materials 工程技术-材料科学:综合
CiteScore
6.00
自引率
14.60%
发文量
702
审稿时长
2.1 months
期刊介绍: DRM is a leading international journal that publishes new fundamental and applied research on all forms of diamond, the integration of diamond with other advanced materials and development of technologies exploiting diamond. The synthesis, characterization and processing of single crystal diamond, polycrystalline films, nanodiamond powders and heterostructures with other advanced materials are encouraged topics for technical and review articles. In addition to diamond, the journal publishes manuscripts on the synthesis, characterization and application of other related materials including diamond-like carbons, carbon nanotubes, graphene, and boron and carbon nitrides. Articles are sought on the chemical functionalization of diamond and related materials as well as their use in electrochemistry, energy storage and conversion, chemical and biological sensing, imaging, thermal management, photonic and quantum applications, electron emission and electronic devices. The International Conference on Diamond and Carbon Materials has evolved into the largest and most well attended forum in the field of diamond, providing a forum to showcase the latest results in the science and technology of diamond and other carbon materials such as carbon nanotubes, graphene, and diamond-like carbon. Run annually in association with Diamond and Related Materials the conference provides junior and established researchers the opportunity to exchange the latest results ranging from fundamental physical and chemical concepts to applied research focusing on the next generation carbon-based devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信