A moving mesh method for pitting corrosion of heterogeneous materials

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Abu Naser Sarker , Ronald D. Haynes , Michael Robertson
{"title":"A moving mesh method for pitting corrosion of heterogeneous materials","authors":"Abu Naser Sarker ,&nbsp;Ronald D. Haynes ,&nbsp;Michael Robertson","doi":"10.1016/j.camwa.2025.04.005","DOIUrl":null,"url":null,"abstract":"<div><div>An adaptive moving mesh or <em>r</em>-refinement method for the numerical approximation of pitting corrosion in heterogeneous materials is designed and applied to the problem of pitting corrosion in metals. The pitting corrosion is described by Laplace's equation with a moving boundary where the moving boundary problem is coupled with the partial differential equations describing the mesh movement. We show that the numerical approach is able to track evolving pit geometry for complicated materials with varying crystallography, corrosion-resistant inclusions, and material voids.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"191 ","pages":"Pages 48-59"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089812212500149X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

An adaptive moving mesh or r-refinement method for the numerical approximation of pitting corrosion in heterogeneous materials is designed and applied to the problem of pitting corrosion in metals. The pitting corrosion is described by Laplace's equation with a moving boundary where the moving boundary problem is coupled with the partial differential equations describing the mesh movement. We show that the numerical approach is able to track evolving pit geometry for complicated materials with varying crystallography, corrosion-resistant inclusions, and material voids.
非均质材料点蚀的移动网格法
设计了一种适用于非均质材料点蚀数值逼近的自适应移动网格或r-细化方法,并将其应用于金属点蚀问题。用带移动边界的拉普拉斯方程来描述点蚀,其中移动边界问题与描述网格运动的偏微分方程相耦合。我们表明,数值方法能够跟踪具有不同晶体学,耐腐蚀夹杂物和材料空隙的复杂材料的演变坑几何形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信