{"title":"Completely independent spanning trees in kth power of 2-connected graphs","authors":"Xia Hong , Zhizheng Zhang","doi":"10.1016/j.dam.2025.04.051","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></math></span> be spanning trees of a graph <span><math><mi>G</mi></math></span>. For any two vertices <span><math><mrow><mi>u</mi><mo>,</mo><mi>v</mi></mrow></math></span> of <span><math><mi>G</mi></math></span>, if the paths from <span><math><mi>u</mi></math></span> to <span><math><mi>v</mi></math></span> in these <span><math><mi>k</mi></math></span> trees are pairwise openly disjoint, then we say that <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></math></span> are completely independent. Let <span><math><mrow><mi>G</mi><mo>≇</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span>, where <span><math><mrow><mi>n</mi><mo>=</mo><mi>q</mi><mi>k</mi><mo>+</mo><mn>2</mn><mo>,</mo><mi>k</mi><mo>≥</mo><mn>6</mn><mo>,</mo><mi>q</mi><mo>≥</mo><mn>3</mn></mrow></math></span>. In this paper, we prove that the <span><math><mi>k</mi></math></span>th power of any 2-connected graph <span><math><mi>G</mi></math></span> on <span><math><mrow><mi>n</mi><mo>≥</mo><mn>2</mn><mi>k</mi><mrow><mo>(</mo><mi>k</mi><mo>≥</mo><mn>4</mn><mo>)</mo></mrow></mrow></math></span> vertices has <span><math><mi>k</mi></math></span> completely independent spanning trees, unless <span><math><mrow><mi>G</mi><mo>≅</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> where <span><math><mrow><mi>n</mi><mo>=</mo><mi>k</mi><mi>q</mi><mo>+</mo><mi>r</mi><mo>,</mo><mi>r</mi><mo>∈</mo><mrow><mo>{</mo><mn>3</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span> or <span><math><mrow><mi>n</mi><mo>=</mo><mn>2</mn><mi>k</mi><mo>+</mo><mn>2</mn><mo>,</mo><mi>k</mi><mo>≥</mo><mn>6</mn></mrow></math></span>. The work of this paper improves the results of Hong (2018).</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"372 ","pages":"Pages 268-273"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25002197","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Let be spanning trees of a graph . For any two vertices of , if the paths from to in these trees are pairwise openly disjoint, then we say that are completely independent. Let , where . In this paper, we prove that the th power of any 2-connected graph on vertices has completely independent spanning trees, unless where or . The work of this paper improves the results of Hong (2018).
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.