Completely independent spanning trees in kth power of 2-connected graphs

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Xia Hong , Zhizheng Zhang
{"title":"Completely independent spanning trees in kth power of 2-connected graphs","authors":"Xia Hong ,&nbsp;Zhizheng Zhang","doi":"10.1016/j.dam.2025.04.051","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></math></span> be spanning trees of a graph <span><math><mi>G</mi></math></span>. For any two vertices <span><math><mrow><mi>u</mi><mo>,</mo><mi>v</mi></mrow></math></span> of <span><math><mi>G</mi></math></span>, if the paths from <span><math><mi>u</mi></math></span> to <span><math><mi>v</mi></math></span> in these <span><math><mi>k</mi></math></span> trees are pairwise openly disjoint, then we say that <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></math></span> are completely independent. Let <span><math><mrow><mi>G</mi><mo>≇</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span>, where <span><math><mrow><mi>n</mi><mo>=</mo><mi>q</mi><mi>k</mi><mo>+</mo><mn>2</mn><mo>,</mo><mi>k</mi><mo>≥</mo><mn>6</mn><mo>,</mo><mi>q</mi><mo>≥</mo><mn>3</mn></mrow></math></span>. In this paper, we prove that the <span><math><mi>k</mi></math></span>th power of any 2-connected graph <span><math><mi>G</mi></math></span> on <span><math><mrow><mi>n</mi><mo>≥</mo><mn>2</mn><mi>k</mi><mrow><mo>(</mo><mi>k</mi><mo>≥</mo><mn>4</mn><mo>)</mo></mrow></mrow></math></span> vertices has <span><math><mi>k</mi></math></span> completely independent spanning trees, unless <span><math><mrow><mi>G</mi><mo>≅</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> where <span><math><mrow><mi>n</mi><mo>=</mo><mi>k</mi><mi>q</mi><mo>+</mo><mi>r</mi><mo>,</mo><mi>r</mi><mo>∈</mo><mrow><mo>{</mo><mn>3</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span> or <span><math><mrow><mi>n</mi><mo>=</mo><mn>2</mn><mi>k</mi><mo>+</mo><mn>2</mn><mo>,</mo><mi>k</mi><mo>≥</mo><mn>6</mn></mrow></math></span>. The work of this paper improves the results of Hong (2018).</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"372 ","pages":"Pages 268-273"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25002197","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Let T1,T2,,Tk be spanning trees of a graph G. For any two vertices u,v of G, if the paths from u to v in these k trees are pairwise openly disjoint, then we say that T1,T2,,Tk are completely independent. Let GCn, where n=qk+2,k6,q3. In this paper, we prove that the kth power of any 2-connected graph G on n2k(k4) vertices has k completely independent spanning trees, unless GCn where n=kq+r,r{3,,k1} or n=2k+2,k6. The work of this paper improves the results of Hong (2018).
完全独立的2连通图的k次生成树
设T1,T2,…,Tk是图G的生成树,对于任意两个顶点u,v (G)如果这k棵树中从u到v的路径是两两公开不相交的,那么我们说T1,T2,…,Tk是完全独立的。设G≇Cn,其中n=qk+2,k≥6,q≥3。本文证明了任意2连通图G在n≥2k(k≥4)个顶点上的k次幂有k个完全独立的生成树,除非G = Cn其中n=kq+r,r∈{3,…,k−1}或n=2k+2,k≥6。本文的工作改进了Hong(2018)的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信