Zhengxin Yang , Wenwen Tan , Yi Xiao , Qi Feng , Longjun Xu , Chenglun Liu , Zao Jiang
{"title":"Unlocking the applicability of Ni-based self-supported anodes in microbial fuel cells for the shale gas flowback wastewater treatment","authors":"Zhengxin Yang , Wenwen Tan , Yi Xiao , Qi Feng , Longjun Xu , Chenglun Liu , Zao Jiang","doi":"10.1016/j.jenvman.2025.125491","DOIUrl":null,"url":null,"abstract":"<div><div>The NiCo<sub>2</sub>O<sub>4</sub> (NCOC) and Ni-P (NPC) self-supported anodes were successfully fabricated and utilized in microbial fuel cells (MFCs) for the treatment of actual shale gas flowback wastewater in this study. As a result, the NCOC and NPC displayed outstanding output voltages at 579.1 mV and 537.1 mV, as well as significantly decreased apparent internal resistances to 228.3 Ω and 396.7 Ω compared to the blank carbon cloth (CC, 206.7 mV and 1850.0 Ω). The electrochemical properties, rough surfaces and biocompatibility of NCOC (649.8 mW/m<sup>2</sup>) and NPC (436.1 mW/m<sup>2</sup>) endowed MFCs with superior power generation that was 11.7 and 7.8 times that of CC (55.7 mW/m<sup>2</sup>). Additionally, the removal ratios of the chemical oxygen demand based on NCOC and NPC achieved 61.5 % (1040.4 ± 34.1 mg/L) and 67.2 % (1136.7 ± 34.1 mg/L) with the increased energy conversion ratios from 8.4 % to 11.2 % and 9.7 %. Ultimately, the successful formation of the biofilms and the enrichment of the functional microorganisms such as <em>Marinobacterium, Halomonas</em> and <em>Desulfuromonas</em> on the prepared anodes further verified that NCOC and NPC could be potential research candidates in MFCs for decontaminating high-salty industrial wastewater.</div></div>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"383 ","pages":"Article 125491"},"PeriodicalIF":8.0000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301479725014677","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The NiCo2O4 (NCOC) and Ni-P (NPC) self-supported anodes were successfully fabricated and utilized in microbial fuel cells (MFCs) for the treatment of actual shale gas flowback wastewater in this study. As a result, the NCOC and NPC displayed outstanding output voltages at 579.1 mV and 537.1 mV, as well as significantly decreased apparent internal resistances to 228.3 Ω and 396.7 Ω compared to the blank carbon cloth (CC, 206.7 mV and 1850.0 Ω). The electrochemical properties, rough surfaces and biocompatibility of NCOC (649.8 mW/m2) and NPC (436.1 mW/m2) endowed MFCs with superior power generation that was 11.7 and 7.8 times that of CC (55.7 mW/m2). Additionally, the removal ratios of the chemical oxygen demand based on NCOC and NPC achieved 61.5 % (1040.4 ± 34.1 mg/L) and 67.2 % (1136.7 ± 34.1 mg/L) with the increased energy conversion ratios from 8.4 % to 11.2 % and 9.7 %. Ultimately, the successful formation of the biofilms and the enrichment of the functional microorganisms such as Marinobacterium, Halomonas and Desulfuromonas on the prepared anodes further verified that NCOC and NPC could be potential research candidates in MFCs for decontaminating high-salty industrial wastewater.
期刊介绍:
The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.