{"title":"Halogen-free ionic liquid as metalworking fluid: Impact on tool wear and surface roughness in machining of Ti6Al4V alloys","authors":"Arun Kumar Bambam , Marella Pavan Kalyan , Abinash Pradhan , Kishor Kumar Gajrani","doi":"10.1016/j.wear.2025.206088","DOIUrl":null,"url":null,"abstract":"<div><div>Titanium alloys are known for their poor thermal conductivity. During dry machining of titanium alloy, significant heat is generated, which has detrimental effect on the quality of machined components and longevity of cutting tools. Therefore, metalworking fluids (MWFs) are employed during machining. Vegetable oils are currently recognised as a viable environmentally friendly alternative to petroleum based MWFs owing to their biodegradability, renewability, low toxicity, and efficient lubricating qualities. However, they are also known for poor oxidation stability and inadequate performance at low temperatures. Halogen-free ionic liquids (HF-IL) are evolves as potential additive to MWFs due to its distinct properties such as high thermal stability and oxidation stability. This work compares the effect of varying concentration of phosphonium based HF-IL in canola oil on its thermos-physical properties such as wettability and thermal conductivity. It was found that the addition of HF-IL in canola oil improves the MWFs spreadability by 40<span><math><mrow><mo>−</mo></mrow></math></span>45 % by compared to pure canola oil. Further, machining experiments were conducted under three different environments; dry, canola oil and phosphonium based HF-IL blended with canola oil at varying feeds. Machining responses such as cutting temperature, tool flank and rake wear, machined surface roughness and chip morphology were analysed. The findings demonstrated that the use of HF-IL as additives led to drop in cutting temperature by 68<span><math><mrow><mo>−</mo></mrow></math></span>93 % and reduction in surface roughness by 24<span><math><mrow><mo>−</mo></mrow></math></span>61 % at different feeds compared to dry machining. Furthermore, scanning electron microscopy and energy dispersive spectroscopy examinations elucidated the wear mechanism on tools under different machining environments. HF-IL environment showed the lowest tool flank and rake wear. These data corroborate the effectiveness of HF-IL as MWFs additive to improve tool life and surface finish.</div></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":"574 ","pages":"Article 206088"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wear","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043164825003576","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Titanium alloys are known for their poor thermal conductivity. During dry machining of titanium alloy, significant heat is generated, which has detrimental effect on the quality of machined components and longevity of cutting tools. Therefore, metalworking fluids (MWFs) are employed during machining. Vegetable oils are currently recognised as a viable environmentally friendly alternative to petroleum based MWFs owing to their biodegradability, renewability, low toxicity, and efficient lubricating qualities. However, they are also known for poor oxidation stability and inadequate performance at low temperatures. Halogen-free ionic liquids (HF-IL) are evolves as potential additive to MWFs due to its distinct properties such as high thermal stability and oxidation stability. This work compares the effect of varying concentration of phosphonium based HF-IL in canola oil on its thermos-physical properties such as wettability and thermal conductivity. It was found that the addition of HF-IL in canola oil improves the MWFs spreadability by 4045 % by compared to pure canola oil. Further, machining experiments were conducted under three different environments; dry, canola oil and phosphonium based HF-IL blended with canola oil at varying feeds. Machining responses such as cutting temperature, tool flank and rake wear, machined surface roughness and chip morphology were analysed. The findings demonstrated that the use of HF-IL as additives led to drop in cutting temperature by 6893 % and reduction in surface roughness by 2461 % at different feeds compared to dry machining. Furthermore, scanning electron microscopy and energy dispersive spectroscopy examinations elucidated the wear mechanism on tools under different machining environments. HF-IL environment showed the lowest tool flank and rake wear. These data corroborate the effectiveness of HF-IL as MWFs additive to improve tool life and surface finish.
期刊介绍:
Wear journal is dedicated to the advancement of basic and applied knowledge concerning the nature of wear of materials. Broadly, topics of interest range from development of fundamental understanding of the mechanisms of wear to innovative solutions to practical engineering problems. Authors of experimental studies are expected to comment on the repeatability of the data, and whenever possible, conduct multiple measurements under similar testing conditions. Further, Wear embraces the highest standards of professional ethics, and the detection of matching content, either in written or graphical form, from other publications by the current authors or by others, may result in rejection.