{"title":"Rational design of an acid-sensitive fluorophore from 8-hydroxy quinoline derivative exhibiting proton activated charge transfer characteristics","authors":"M.M. Akhil Kumar , K.M. Meghna , P.G. Sudheesh , V.M. Biju","doi":"10.1016/j.saa.2025.126286","DOIUrl":null,"url":null,"abstract":"<div><div>A pH-responsive small organic molecule 8OMeQBI has been synthesized by functionalizing 8-hydroxy quinoline and benzimidazole derivatives in an organo-aqueous medium. The pH-responsive fluorescence behavior in a semi-aqueous environment was studied using UV–visible and fluorescence spectral analysis. The newly prepared fluorophores show a protonation-activated fluorescence enhancement in an acidic environment. An increase in pH in an alkaline environment has caused deprotonation, resulting in diminished fluorescence intensity. Additionally, the protonation-induced fluorescence was confirmed through the proton-nuclear magnetic resonance titration analysis. Further, the photophysical studies reveal an enhancement in the relative quantum yield (ɸ = 0.3) and fluorescence lifetime (increases to 3 ns at pH 3) in an acidic environment. Also, the fluorophore shows fluorescence “On” with acids such as hydrochloric acid and fluorescence “Off” with bases such as triethylamine (TEA). This fluorescence “on-off” behavior is reversible and repeatable, which helps to develop a molecular-level logic gate and sequential memory unit with “Writing-Reading-Erasing-Reading” behavior. Furthermore, solid supportive experiments were carried out by preparing fluorophore-based films and paper strips. Also, the fluorophore demonstrates the practical applicability of potable water samples.</div></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":"339 ","pages":"Article 126286"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138614252500592X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
A pH-responsive small organic molecule 8OMeQBI has been synthesized by functionalizing 8-hydroxy quinoline and benzimidazole derivatives in an organo-aqueous medium. The pH-responsive fluorescence behavior in a semi-aqueous environment was studied using UV–visible and fluorescence spectral analysis. The newly prepared fluorophores show a protonation-activated fluorescence enhancement in an acidic environment. An increase in pH in an alkaline environment has caused deprotonation, resulting in diminished fluorescence intensity. Additionally, the protonation-induced fluorescence was confirmed through the proton-nuclear magnetic resonance titration analysis. Further, the photophysical studies reveal an enhancement in the relative quantum yield (ɸ = 0.3) and fluorescence lifetime (increases to 3 ns at pH 3) in an acidic environment. Also, the fluorophore shows fluorescence “On” with acids such as hydrochloric acid and fluorescence “Off” with bases such as triethylamine (TEA). This fluorescence “on-off” behavior is reversible and repeatable, which helps to develop a molecular-level logic gate and sequential memory unit with “Writing-Reading-Erasing-Reading” behavior. Furthermore, solid supportive experiments were carried out by preparing fluorophore-based films and paper strips. Also, the fluorophore demonstrates the practical applicability of potable water samples.
期刊介绍:
Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science.
The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments.
Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate.
Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to:
Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences,
Novel experimental techniques or instrumentation for molecular spectroscopy,
Novel theoretical and computational methods,
Novel applications in photochemistry and photobiology,
Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.