Convergence rate of nonlinear delayed neutral McKean-Vlasov SDEs driven by fractional Brownian motions

IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED
Shengrong Wang , Jie Xie , Li Tan
{"title":"Convergence rate of nonlinear delayed neutral McKean-Vlasov SDEs driven by fractional Brownian motions","authors":"Shengrong Wang ,&nbsp;Jie Xie ,&nbsp;Li Tan","doi":"10.1016/j.amc.2025.129478","DOIUrl":null,"url":null,"abstract":"<div><div>The primary objective of this paper is to explore the strong convergence for a neutral McKean-Vlasov stochastic differential equation with super-linear delay driven by fractional Brownian motion with Hurst exponent <span><math><mi>H</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. After giving uniqueness and existence for the exact solution, we analyze the properties including boundedness of moment and propagation of chaos. Besides, we give the Euler-Maruyama (EM) scheme and show that the numerical solution convergent to the true solution strongly. Furthermore, a related example is given to illustrate the theory.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"502 ","pages":"Article 129478"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325002048","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The primary objective of this paper is to explore the strong convergence for a neutral McKean-Vlasov stochastic differential equation with super-linear delay driven by fractional Brownian motion with Hurst exponent H(1/2,1). After giving uniqueness and existence for the exact solution, we analyze the properties including boundedness of moment and propagation of chaos. Besides, we give the Euler-Maruyama (EM) scheme and show that the numerical solution convergent to the true solution strongly. Furthermore, a related example is given to illustrate the theory.
分数阶布朗运动驱动非线性延迟中立型McKean-Vlasov SDEs的收敛速率
本文的主要目的是研究一类具有超线性延迟的中立型McKean-Vlasov随机微分方程的强收敛性,该方程由分数阶布朗运动驱动,且Hurst指数H∈(1/2,1)。在给出精确解的唯一性和存在性之后,分析了混沌的矩有界性和混沌的传播性。此外,给出了Euler-Maruyama (EM)格式,并证明了数值解强收敛于真解。最后,给出了一个相关的实例来说明该理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信