Roberta Albino Dos Reis , Ariane Boudier , Flavian Piquard , Joana C. Piereti , Amedea B. Seabra , Igor Clarot
{"title":"Nitric oxide detection by electrochemistry selective probe: calibration in the study environment is mandatory","authors":"Roberta Albino Dos Reis , Ariane Boudier , Flavian Piquard , Joana C. Piereti , Amedea B. Seabra , Igor Clarot","doi":"10.1016/j.niox.2025.04.002","DOIUrl":null,"url":null,"abstract":"<div><div>Nitric oxide (NO) plays a crucial role in various physiological processes, making its detection and controlled release significant for both therapeutic and environmental contexts. Electrochemical sensors are widely used for NO detection due to their high sensitivity and real-time monitoring capabilities. However, challenges such as interference from other gasotransmitters, sensor degradation, and calibration difficulties—especially in complex biological matrices—hinder accurate NO measurement. This review discusses recent advancements in electrochemical NO detection, with a focus on the impact of complex biological matrices, calibration strategies, and sensor designs. The release of NO from nanoparticles, such as S-nitrosoglutathione (GSNO)-encapsulating chitosan nanoparticles, is used as a case study for improving NO detection accuracy. Future innovations in sensor technology and nanoparticle design are expected to expand the applicability of NO detection in personalized medicine and environmental monitoring.</div></div>","PeriodicalId":19357,"journal":{"name":"Nitric oxide : biology and chemistry","volume":"157 ","pages":"Pages 46-54"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nitric oxide : biology and chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1089860325000370","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nitric oxide (NO) plays a crucial role in various physiological processes, making its detection and controlled release significant for both therapeutic and environmental contexts. Electrochemical sensors are widely used for NO detection due to their high sensitivity and real-time monitoring capabilities. However, challenges such as interference from other gasotransmitters, sensor degradation, and calibration difficulties—especially in complex biological matrices—hinder accurate NO measurement. This review discusses recent advancements in electrochemical NO detection, with a focus on the impact of complex biological matrices, calibration strategies, and sensor designs. The release of NO from nanoparticles, such as S-nitrosoglutathione (GSNO)-encapsulating chitosan nanoparticles, is used as a case study for improving NO detection accuracy. Future innovations in sensor technology and nanoparticle design are expected to expand the applicability of NO detection in personalized medicine and environmental monitoring.
期刊介绍:
Nitric Oxide includes original research, methodology papers and reviews relating to nitric oxide and other gasotransmitters such as hydrogen sulfide and carbon monoxide. Special emphasis is placed on the biological chemistry, physiology, pharmacology, enzymology and pathological significance of these molecules in human health and disease. The journal also accepts manuscripts relating to plant and microbial studies involving these molecules.