Nikolai Andrianov, Samira Mohammadkhani, Behzad Rostami, Wael Fadi Al-Masri
{"title":"Intermittent injection of supercritical CO2 in oil-brine-saturated rocks: Experimental data and numerical modelling","authors":"Nikolai Andrianov, Samira Mohammadkhani, Behzad Rostami, Wael Fadi Al-Masri","doi":"10.1016/j.ijggc.2025.104382","DOIUrl":null,"url":null,"abstract":"<div><div>We present both experimental and numerical modelling results for an unsteady-state core flooding experiment, designed to mitigate risks associated with CO<sub>2</sub> injection in a depleted oil field offshore Denmark. The change in the samples’ permeability before and after the experiment is shown to be minimal, suggesting that a potential reduction in injectivity is unlikely. The experimental data include differential pressure measurements across the sample and brine saturation measurements in the sample as a function of time. We demonstrate that the experimental data can be history-matched with a range of parameters defining the relative permeability and capillary pressure functions for the three-phase oil-brine-CO<sub>2</sub> system. Two numerical models are developed for solving the forward problem: a computationally expensive, comprehensive equation-of-state based model and a faster incompressible immiscible proxy model. The inverse problem solutions are estimated using the proxy model, and the best-obtained saturation functions are utilized to solve the forward problem with the comprehensive model. The obtained indicative uncertainty ranges can be useful in the absence of more complex and costly experimental data, such as in-situ X-ray saturation measurements.</div></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"144 ","pages":"Article 104382"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Greenhouse Gas Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1750583625000805","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
We present both experimental and numerical modelling results for an unsteady-state core flooding experiment, designed to mitigate risks associated with CO2 injection in a depleted oil field offshore Denmark. The change in the samples’ permeability before and after the experiment is shown to be minimal, suggesting that a potential reduction in injectivity is unlikely. The experimental data include differential pressure measurements across the sample and brine saturation measurements in the sample as a function of time. We demonstrate that the experimental data can be history-matched with a range of parameters defining the relative permeability and capillary pressure functions for the three-phase oil-brine-CO2 system. Two numerical models are developed for solving the forward problem: a computationally expensive, comprehensive equation-of-state based model and a faster incompressible immiscible proxy model. The inverse problem solutions are estimated using the proxy model, and the best-obtained saturation functions are utilized to solve the forward problem with the comprehensive model. The obtained indicative uncertainty ranges can be useful in the absence of more complex and costly experimental data, such as in-situ X-ray saturation measurements.
期刊介绍:
The International Journal of Greenhouse Gas Control is a peer reviewed journal focusing on scientific and engineering developments in greenhouse gas control through capture and storage at large stationary emitters in the power sector and in other major resource, manufacturing and production industries. The Journal covers all greenhouse gas emissions within the power and industrial sectors, and comprises both technical and non-technical related literature in one volume. Original research, review and comments papers are included.