{"title":"Exploring omics approaches in probiotics: Contemporary developments and prospective pathways","authors":"Ishita Verma, Bhargabi Banerjee, Arushi Singh, Priya Kannan, Lilly M. Saleena","doi":"10.1016/j.mimet.2025.107135","DOIUrl":null,"url":null,"abstract":"<div><div>The application of omics technologies in combination with bench investigations has brought about a significant transformation in the field of probiotics, enabling a thorough investigation of the basic elements contributing to the probiotic activity. Genomics studies have decoded the complete set of genes of probiotic organisms, shedding light on beneficial traits and mechanisms of probiotic action. Transcriptomics analyses focus on gene expression patterns and investigate probiotic adaptation and functionality. Proteomic studies have revealed the intricate connections between proteins in probiotic cells and their relationship with the host environment. Metabolomic profiling has provided a comprehensive perspective on the metabolic pathways related to probiotic metabolism and the production of bioactive substances. The ongoing development of omics technology presents exciting opportunities for probiotic research, as it allows for a deeper exploration of probiotic-host interactions and the creation of advanced and tailored probiotics that offer specific health advantages. A comprehensive analysis of recent progress in genomics, transcriptomics, proteomics, and metabolomics related to probiotics is presented in this review.</div></div>","PeriodicalId":16409,"journal":{"name":"Journal of microbiological methods","volume":"232 ","pages":"Article 107135"},"PeriodicalIF":1.9000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiological methods","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016770122500051X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The application of omics technologies in combination with bench investigations has brought about a significant transformation in the field of probiotics, enabling a thorough investigation of the basic elements contributing to the probiotic activity. Genomics studies have decoded the complete set of genes of probiotic organisms, shedding light on beneficial traits and mechanisms of probiotic action. Transcriptomics analyses focus on gene expression patterns and investigate probiotic adaptation and functionality. Proteomic studies have revealed the intricate connections between proteins in probiotic cells and their relationship with the host environment. Metabolomic profiling has provided a comprehensive perspective on the metabolic pathways related to probiotic metabolism and the production of bioactive substances. The ongoing development of omics technology presents exciting opportunities for probiotic research, as it allows for a deeper exploration of probiotic-host interactions and the creation of advanced and tailored probiotics that offer specific health advantages. A comprehensive analysis of recent progress in genomics, transcriptomics, proteomics, and metabolomics related to probiotics is presented in this review.
期刊介绍:
The Journal of Microbiological Methods publishes scholarly and original articles, notes and review articles. These articles must include novel and/or state-of-the-art methods, or significant improvements to existing methods. Novel and innovative applications of current methods that are validated and useful will also be published. JMM strives for scholarship, innovation and excellence. This demands scientific rigour, the best available methods and technologies, correctly replicated experiments/tests, the inclusion of proper controls, calibrations, and the correct statistical analysis. The presentation of the data must support the interpretation of the method/approach.
All aspects of microbiology are covered, except virology. These include agricultural microbiology, applied and environmental microbiology, bioassays, bioinformatics, biotechnology, biochemical microbiology, clinical microbiology, diagnostics, food monitoring and quality control microbiology, microbial genetics and genomics, geomicrobiology, microbiome methods regardless of habitat, high through-put sequencing methods and analysis, microbial pathogenesis and host responses, metabolomics, metagenomics, metaproteomics, microbial ecology and diversity, microbial physiology, microbial ultra-structure, microscopic and imaging methods, molecular microbiology, mycology, novel mathematical microbiology and modelling, parasitology, plant-microbe interactions, protein markers/profiles, proteomics, pyrosequencing, public health microbiology, radioisotopes applied to microbiology, robotics applied to microbiological methods,rumen microbiology, microbiological methods for space missions and extreme environments, sampling methods and samplers, soil and sediment microbiology, transcriptomics, veterinary microbiology, sero-diagnostics and typing/identification.