Ultrathin Zinc cobalt oxide nanowalls for supercapacitive energy storage applications

IF 8 Q1 ENERGY & FUELS
Bashar Aljawrneh , Borhan Aldeen Albiss , Amani Al-Othman , Muhammad Tawalbeh , Abdelelah Alshanableh , Saja Alrousan , Rawan Hayajneh
{"title":"Ultrathin Zinc cobalt oxide nanowalls for supercapacitive energy storage applications","authors":"Bashar Aljawrneh ,&nbsp;Borhan Aldeen Albiss ,&nbsp;Amani Al-Othman ,&nbsp;Muhammad Tawalbeh ,&nbsp;Abdelelah Alshanableh ,&nbsp;Saja Alrousan ,&nbsp;Rawan Hayajneh","doi":"10.1016/j.nexus.2025.100439","DOIUrl":null,"url":null,"abstract":"<div><div>The development of efficient energy storage devices with enhanced performance and stability is crucial to advance the next generation energy applications. Supercapacitors are of particular interest due to their fast charge-discharge cycles and durability that make them ideal for portable electronic devices and renewable energy systems. While functional, supercapacitors are often fabricated from high-cost materials. This work aims at synthesizing a lower cost, supercapacitor based on ultrathin zinc-cobalt (ZC) oxide nanowalls supported on a copper tape (Cu) via a hydrothermal method. The structural and electrochemical characteristics were evaluated for energy storage applications. The scanning electron microscope (SEM) and atomic force microscope (AFM) confirmed the formation of ultrathin ZC/Cu nanowalls with a surface roughness of 233 nm, while elemental analysis (XRF) revealed the presence of 32.3 % zinc and 67.7 % cobalt. The crystallinity degree of the prepared samples was examined via X-ray diffraction (XRD) and showed enhanced properties. The electrochemical analysis demonstrated an optimum specific capacitance of 205 F/g at a scanning rate of 10 mV/s within a potential window ranging from 0.0 (V) to 0.7 (V). The galvanostatic charge-discharge (GCD) curves exhibited an asymmetric triangular-like shape. The electrochemical impedance spectroscopy (EIS) data showed a low transfer resistance of 13Ω, demonstrating efficient transport of ions at the electrolyte/electrode interface. The results reported in this work suggest that the prepared ZC/Cu materials are promising for supercapacitive energy storage applications.</div></div>","PeriodicalId":93548,"journal":{"name":"Energy nexus","volume":"18 ","pages":"Article 100439"},"PeriodicalIF":8.0000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy nexus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772427125000804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The development of efficient energy storage devices with enhanced performance and stability is crucial to advance the next generation energy applications. Supercapacitors are of particular interest due to their fast charge-discharge cycles and durability that make them ideal for portable electronic devices and renewable energy systems. While functional, supercapacitors are often fabricated from high-cost materials. This work aims at synthesizing a lower cost, supercapacitor based on ultrathin zinc-cobalt (ZC) oxide nanowalls supported on a copper tape (Cu) via a hydrothermal method. The structural and electrochemical characteristics were evaluated for energy storage applications. The scanning electron microscope (SEM) and atomic force microscope (AFM) confirmed the formation of ultrathin ZC/Cu nanowalls with a surface roughness of 233 nm, while elemental analysis (XRF) revealed the presence of 32.3 % zinc and 67.7 % cobalt. The crystallinity degree of the prepared samples was examined via X-ray diffraction (XRD) and showed enhanced properties. The electrochemical analysis demonstrated an optimum specific capacitance of 205 F/g at a scanning rate of 10 mV/s within a potential window ranging from 0.0 (V) to 0.7 (V). The galvanostatic charge-discharge (GCD) curves exhibited an asymmetric triangular-like shape. The electrochemical impedance spectroscopy (EIS) data showed a low transfer resistance of 13Ω, demonstrating efficient transport of ions at the electrolyte/electrode interface. The results reported in this work suggest that the prepared ZC/Cu materials are promising for supercapacitive energy storage applications.
超电容储能应用的超薄锌钴氧化物纳米壁
开发性能和稳定性更高的高效储能设备对于推进下一代能源的应用至关重要。超级电容器因其快速充放电周期和耐用性而受到特别关注,这使其成为便携式电子设备和可再生能源系统的理想选择。虽然功能齐全,但超级电容器通常由高成本材料制成。本研究旨在通过水热法合成一种低成本的超级电容器,该电容器基于支撑在铜带(Cu)上的超薄锌钴(ZC)氧化物纳米壁。并对其结构和电化学特性进行了评价。扫描电子显微镜(SEM)和原子力显微镜(AFM)证实形成了表面粗糙度为233 nm的超薄ZC/Cu纳米壁,元素分析(XRF)显示存在32.3%的锌和67.7%的钴。通过x射线衍射(XRD)检测了制备的样品的结晶度,并显示出增强的性能。电化学分析表明,在0.0 (V) ~ 0.7 (V)的电位窗口范围内,扫描速率为10 mV/s时的最佳比电容为205 F/g,恒流充放电曲线呈不对称三角形。电化学阻抗谱(EIS)数据显示,传输电阻为13Ω,表明离子在电解质/电极界面上的有效传输。本文的研究结果表明,制备的ZC/Cu材料在超级电容储能方面具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy nexus
Energy nexus Energy (General), Ecological Modelling, Renewable Energy, Sustainability and the Environment, Water Science and Technology, Agricultural and Biological Sciences (General)
CiteScore
7.70
自引率
0.00%
发文量
0
审稿时长
109 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信