High-accuracy prediction of vessels’ estimated time of arrival in seaports: A hybrid machine learning approach

IF 3.9 Q2 TRANSPORTATION
Sunny Md. Saber , Kya Zaw Thowai , Muhammad Asifur Rahman , Md. Mehedi Hassan , A.B.M. Mainul Bari , Asif Raihan
{"title":"High-accuracy prediction of vessels’ estimated time of arrival in seaports: A hybrid machine learning approach","authors":"Sunny Md. Saber ,&nbsp;Kya Zaw Thowai ,&nbsp;Muhammad Asifur Rahman ,&nbsp;Md. Mehedi Hassan ,&nbsp;A.B.M. Mainul Bari ,&nbsp;Asif Raihan","doi":"10.1016/j.martra.2025.100133","DOIUrl":null,"url":null,"abstract":"<div><div>Optimizing the Estimated Time of Arrival (ETA) for seaport-bound vessels is crucial to maritime operations since inaccurate ETA predictions can have a ripple effect, causing vessel schedule disruptions, congestion, and decreased port operational effectiveness. To address these challenges and fill substantial deficiencies in existing prediction models, we have introduced a novel hybrid tree-based stacking machine learning framework integrating Extra Trees, AutoGluon Tabular, and LightGBM, with Random Forest Regressor (RFR) as the meta-learner. Utilizing Automatic Identification System (AIS) data from vessels in the Baltic Sea, our model significantly improves ETA predictions, achieving a mean absolute percentage error (MAPE) of 0.25 %. Compared to existing machine learning algorithms, our stacking model exhibits superior prediction performance. Our study's feature importance analysis highlights the crucial role of variables like speed, distance, course, and vessel type in ETA forecasts. Cross-validation further confirms the robustness of our ensemble model. In conclusion, this study improves predictive analytics in marine logistics by giving useful information about real-time ETA estimates. This helps port authorities make the best use of their resources, reduces vessel idle time and congestion, and increases overall efficiency and sustainability. This way, this study can significantly contribute towards attaining operational excellence and provide a strong foundation for future predictive models, advancing smart port management and maritime logistics.</div></div>","PeriodicalId":100885,"journal":{"name":"Maritime Transport Research","volume":"8 ","pages":"Article 100133"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Maritime Transport Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666822X2500005X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Optimizing the Estimated Time of Arrival (ETA) for seaport-bound vessels is crucial to maritime operations since inaccurate ETA predictions can have a ripple effect, causing vessel schedule disruptions, congestion, and decreased port operational effectiveness. To address these challenges and fill substantial deficiencies in existing prediction models, we have introduced a novel hybrid tree-based stacking machine learning framework integrating Extra Trees, AutoGluon Tabular, and LightGBM, with Random Forest Regressor (RFR) as the meta-learner. Utilizing Automatic Identification System (AIS) data from vessels in the Baltic Sea, our model significantly improves ETA predictions, achieving a mean absolute percentage error (MAPE) of 0.25 %. Compared to existing machine learning algorithms, our stacking model exhibits superior prediction performance. Our study's feature importance analysis highlights the crucial role of variables like speed, distance, course, and vessel type in ETA forecasts. Cross-validation further confirms the robustness of our ensemble model. In conclusion, this study improves predictive analytics in marine logistics by giving useful information about real-time ETA estimates. This helps port authorities make the best use of their resources, reduces vessel idle time and congestion, and increases overall efficiency and sustainability. This way, this study can significantly contribute towards attaining operational excellence and provide a strong foundation for future predictive models, advancing smart port management and maritime logistics.
船舶到达海港时间的高精度预测:一种混合机器学习方法
优化海港船舶的预计到达时间(ETA)对海上运营至关重要,因为不准确的ETA预测可能会产生连锁反应,导致船舶时间表中断、拥堵和港口运营效率下降。为了解决这些挑战并填补现有预测模型的实质性不足,我们引入了一种新的混合基于树的堆叠机器学习框架,该框架集成了Extra Trees、AutoGluon Tabular和LightGBM,并以随机森林回归器(RFR)作为元学习器。利用波罗的海船只的自动识别系统(AIS)数据,我们的模型显着提高了ETA预测,实现了0.25%的平均绝对百分比误差(MAPE)。与现有的机器学习算法相比,我们的叠加模型具有更好的预测性能。我们研究的特征重要性分析强调了速度、距离、航线和船舶类型等变量在ETA预测中的关键作用。交叉验证进一步证实了我们的集成模型的稳健性。总之,本研究通过提供有关实时ETA估计的有用信息,改进了海洋物流的预测分析。这有助于港口当局充分利用其资源,减少船舶闲置时间和拥堵,并提高整体效率和可持续性。通过这种方式,本研究可以为实现卓越运营做出重大贡献,并为未来的预测模型、推进智能港口管理和海上物流提供坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信