Xin Sun , Zhenbing Pei , Xu Guo , Xin Ye , Lei Wang , Yamei Zhang , Songtao Dong
{"title":"Impact of Ca ions substitution at A-site on LaCoO3 perovskite energy applications","authors":"Xin Sun , Zhenbing Pei , Xu Guo , Xin Ye , Lei Wang , Yamei Zhang , Songtao Dong","doi":"10.1016/j.mseb.2025.118343","DOIUrl":null,"url":null,"abstract":"<div><div>Lanthanide-based perovskites are promising candidates for supercapacitor applications due to their high crystallinity, reversible redox capabilities, diverse electrical properties, oxygen-rich vacancies, stable structures, ease of synthesis, and cost-effectiveness. This study synthesized La<sub>1-x</sub>Ca<sub>x</sub>CoO<sub>3</sub> (x = 0, 0.1, 0.15, and 0.2) samples using the sol–gel method. The La<sub>0.85</sub>Ca<sub>0.15</sub>CoO<sub>3</sub> sample shows a charge transfer resistance of 0.68 Ω and a specific surface area of 44.52 m<sup>2</sup>/g. The La<sub>0.85</sub>Ca<sub>0.15</sub>CoO<sub>3</sub> sample exhibits a specific capacitance of 284.4F/g at a current density of 1 A/g, which is 3.38 times greater than that of the intrinsic sample. The charge storage mechanism involving the oxygen anions was explored through an overcharge and discharge process, revealing that elemental Ca doping markedly enhances the charge storage capacity associated with oxygen intercalation in the LaCoO<sub>3</sub> system. These results suggest that Ca-substituted A-site of perovskites possess significant potential for supercapacitor applications.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering: B","volume":"319 ","pages":"Article 118343"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: B","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510725003678","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lanthanide-based perovskites are promising candidates for supercapacitor applications due to their high crystallinity, reversible redox capabilities, diverse electrical properties, oxygen-rich vacancies, stable structures, ease of synthesis, and cost-effectiveness. This study synthesized La1-xCaxCoO3 (x = 0, 0.1, 0.15, and 0.2) samples using the sol–gel method. The La0.85Ca0.15CoO3 sample shows a charge transfer resistance of 0.68 Ω and a specific surface area of 44.52 m2/g. The La0.85Ca0.15CoO3 sample exhibits a specific capacitance of 284.4F/g at a current density of 1 A/g, which is 3.38 times greater than that of the intrinsic sample. The charge storage mechanism involving the oxygen anions was explored through an overcharge and discharge process, revealing that elemental Ca doping markedly enhances the charge storage capacity associated with oxygen intercalation in the LaCoO3 system. These results suggest that Ca-substituted A-site of perovskites possess significant potential for supercapacitor applications.
期刊介绍:
The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.