Sha-sha Zheng , Wen-di Zhang , Li-jun Tan , Li-fang Zou , Ying-ying Hu , Liu Yang , Bao-cai Xu
{"title":"The effect of uracil on the freeze-drying survival rate of Lactiplantibacillus plantarum YR07 based on transcriptome analysis","authors":"Sha-sha Zheng , Wen-di Zhang , Li-jun Tan , Li-fang Zou , Ying-ying Hu , Liu Yang , Bao-cai Xu","doi":"10.1016/j.fm.2025.104803","DOIUrl":null,"url":null,"abstract":"<div><div>This study aimed to elucidate how adding uracil to the culture medium enhanced the freeze-drying resistance of <em>Lactiplantibacillus plantarum</em> YR07. The results showed that uracil significantly increased the number of viable cells and the freeze-drying survival rate of <em>L. plantarum YR07</em> (<em>P</em> < 0.05). This effect was primarily achieved through the regulation of several key genes, including those involved in energy production (pyrR, pyrB, purQ, purN, adhE), cell barrier protection (fabG, serS), cell repair (oppA, uvrC), and oxidative stress response (cysK). Specifically, uracil promoted energy production and substrate availability by upregulating genes related to carbohydrate metabolism and purine biosynthesis. Additionally, uracil enhanced the synthesis of unsaturated fatty acids and glutamine biosynthesis by regulating the expression of genes related to the cell wall and membrane, thereby strengthening the physical protective barrier. Furthermore, by promoting the expression of genes involved in DNA and protein repair, uracil provided the raw materials necessary for cellular repair and helped restore damaged structures by influencing nucleotide metabolism and protein synthesis. Uracil also stimulated the production of sulfur-containing amino acids, which helped <em>L. plantarum YR07</em> resist oxidative stress and reduce cellular damage. Together, these regulatory mechanisms significantly enhanced the adaptive capacity of <em>L. plantarum YR07</em> under harsh environmental conditions.</div></div>","PeriodicalId":12399,"journal":{"name":"Food microbiology","volume":"131 ","pages":"Article 104803"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0740002025000838","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to elucidate how adding uracil to the culture medium enhanced the freeze-drying resistance of Lactiplantibacillus plantarum YR07. The results showed that uracil significantly increased the number of viable cells and the freeze-drying survival rate of L. plantarum YR07 (P < 0.05). This effect was primarily achieved through the regulation of several key genes, including those involved in energy production (pyrR, pyrB, purQ, purN, adhE), cell barrier protection (fabG, serS), cell repair (oppA, uvrC), and oxidative stress response (cysK). Specifically, uracil promoted energy production and substrate availability by upregulating genes related to carbohydrate metabolism and purine biosynthesis. Additionally, uracil enhanced the synthesis of unsaturated fatty acids and glutamine biosynthesis by regulating the expression of genes related to the cell wall and membrane, thereby strengthening the physical protective barrier. Furthermore, by promoting the expression of genes involved in DNA and protein repair, uracil provided the raw materials necessary for cellular repair and helped restore damaged structures by influencing nucleotide metabolism and protein synthesis. Uracil also stimulated the production of sulfur-containing amino acids, which helped L. plantarum YR07 resist oxidative stress and reduce cellular damage. Together, these regulatory mechanisms significantly enhanced the adaptive capacity of L. plantarum YR07 under harsh environmental conditions.
期刊介绍:
Food Microbiology publishes original research articles, short communications, review papers, letters, news items and book reviews dealing with all aspects of the microbiology of foods. The editors aim to publish manuscripts of the highest quality which are both relevant and applicable to the broad field covered by the journal. Studies must be novel, have a clear connection to food microbiology, and be of general interest to the international community of food microbiologists. The editors make every effort to ensure rapid and fair reviews, resulting in timely publication of accepted manuscripts.