Super-Hamiltonians for super-Macdonald polynomials

IF 4.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Dmitry Galakhov , Alexei Morozov , Nikita Tselousov
{"title":"Super-Hamiltonians for super-Macdonald polynomials","authors":"Dmitry Galakhov ,&nbsp;Alexei Morozov ,&nbsp;Nikita Tselousov","doi":"10.1016/j.physletb.2025.139481","DOIUrl":null,"url":null,"abstract":"<div><div>The Macdonald finite-difference Hamiltonian is lifted to a super-generalization. In addition to canonical bosonic time variables <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> new Grassmann time variables <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> are introduced, and the Hamiltonian is represented as a differential operator acting on a space of functions of both types of variables <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>. Eigenfunctions for this Hamiltonian are a suitable generalization of Macdonald polynomials to super-Macdonald polynomials discussed earlier in the literature. Peculiarities of the construction in comparison to the canonical bosonic case are discussed.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"865 ","pages":"Article 139481"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370269325002424","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Macdonald finite-difference Hamiltonian is lifted to a super-generalization. In addition to canonical bosonic time variables pk new Grassmann time variables θk are introduced, and the Hamiltonian is represented as a differential operator acting on a space of functions of both types of variables pk and θk. Eigenfunctions for this Hamiltonian are a suitable generalization of Macdonald polynomials to super-Macdonald polynomials discussed earlier in the literature. Peculiarities of the construction in comparison to the canonical bosonic case are discussed.
超级麦克唐纳多项式的超级哈密顿量
麦克唐纳有限差分哈密顿量被提升为一个超级泛化。除了正则玻色子时间变量pk之外,还引入了新的Grassmann时间变量θk,并将哈密顿量表示为作用于两种变量pk和θk的函数空间的微分算子。这个哈密顿量的特征函数是麦克唐纳多项式到超麦克唐纳多项式的一个合适的推广,在前面的文献中讨论过。讨论了该结构与正则玻色子情况的比较特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics Letters B
Physics Letters B 物理-物理:综合
CiteScore
9.10
自引率
6.80%
发文量
647
审稿时长
3 months
期刊介绍: Physics Letters B ensures the rapid publication of important new results in particle physics, nuclear physics and cosmology. Specialized editors are responsible for contributions in experimental nuclear physics, theoretical nuclear physics, experimental high-energy physics, theoretical high-energy physics, and astrophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信