Giorgia Ballabio , Letizia Scarabattoli , Martina Rozzoni , Marco Aldo Ortenzi , Giovanna Longhi , Eleonora Pargoletti , Marco Rabuffetti , Carlo F. Morelli , Giovanna Speranza , Giuseppe Cappelletti
{"title":"Bio-based emulsifiers through enzymatic hydrolysis of a soy protein isolate","authors":"Giorgia Ballabio , Letizia Scarabattoli , Martina Rozzoni , Marco Aldo Ortenzi , Giovanna Longhi , Eleonora Pargoletti , Marco Rabuffetti , Carlo F. Morelli , Giovanna Speranza , Giuseppe Cappelletti","doi":"10.1016/j.foodhyd.2025.111472","DOIUrl":null,"url":null,"abstract":"<div><div>Protein-based surfactants are gaining interest in several industrial sectors, due to their low-cost and biodegradability. Their properties make them a valid bio-based alternative to petrochemical-based tensides, thus reducing environmental and health concerns. To enhance their techno-functional properties, protein structure must be modified. Compared to chemical methods, enzymatic hydrolysis offers an industrially viable and sustainable approach for this purpose. Particularly, by adjusting enzymatic hydrolysis parameters (type of enzyme, incubation time, temperature and pH), the surfactancy of proteins can be substantially altered, broadening both the application range and the conventional emulsifiers choice. In this study, a commercial soy protein isolate (SPI) was hydrolysed through a biocatalytic approach, using Alcalase® 2.4L FG and Protamex® as enzymatic preparations, at different incubation time (15, 120, 360 min). The resulting Soy Protein Hydrolysates (SPHs) were characterised by ultrafiltration with molecular weight cut-off membranes of 10, 5, and 1 kDa. Then, the emulsifying properties of the prepared SPHs were investigated by interfacial tension (IFT) studies. The two hydrolysates, that achieved the greatest IFT reduction, were tested as emulsifiers in simple peanut oil-in-water (O/W) emulsions, prepared with a sonicator device. Their stability over time was evaluated by turbidimetry, emulsion stability index, confocal microscopy images and dynamic light scattering analyses. Protein secondary structures/emulsifying capability relationship was proposed based on circular dichroism (CD) analyses. Furthermore, for potential industrial applications, more complex O/W emulsions (including rheological modifier, solubilizing agent, antioxidants, and buffers) were also formulated using a rotor-stator. Finally, the stability and rheological behavior of these complex emulsions were thoroughly examined.</div></div>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":"167 ","pages":"Article 111472"},"PeriodicalIF":11.0000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Hydrocolloids","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268005X25004321","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Protein-based surfactants are gaining interest in several industrial sectors, due to their low-cost and biodegradability. Their properties make them a valid bio-based alternative to petrochemical-based tensides, thus reducing environmental and health concerns. To enhance their techno-functional properties, protein structure must be modified. Compared to chemical methods, enzymatic hydrolysis offers an industrially viable and sustainable approach for this purpose. Particularly, by adjusting enzymatic hydrolysis parameters (type of enzyme, incubation time, temperature and pH), the surfactancy of proteins can be substantially altered, broadening both the application range and the conventional emulsifiers choice. In this study, a commercial soy protein isolate (SPI) was hydrolysed through a biocatalytic approach, using Alcalase® 2.4L FG and Protamex® as enzymatic preparations, at different incubation time (15, 120, 360 min). The resulting Soy Protein Hydrolysates (SPHs) were characterised by ultrafiltration with molecular weight cut-off membranes of 10, 5, and 1 kDa. Then, the emulsifying properties of the prepared SPHs were investigated by interfacial tension (IFT) studies. The two hydrolysates, that achieved the greatest IFT reduction, were tested as emulsifiers in simple peanut oil-in-water (O/W) emulsions, prepared with a sonicator device. Their stability over time was evaluated by turbidimetry, emulsion stability index, confocal microscopy images and dynamic light scattering analyses. Protein secondary structures/emulsifying capability relationship was proposed based on circular dichroism (CD) analyses. Furthermore, for potential industrial applications, more complex O/W emulsions (including rheological modifier, solubilizing agent, antioxidants, and buffers) were also formulated using a rotor-stator. Finally, the stability and rheological behavior of these complex emulsions were thoroughly examined.
期刊介绍:
Food Hydrocolloids publishes original and innovative research focused on the characterization, functional properties, and applications of hydrocolloid materials used in food products. These hydrocolloids, defined as polysaccharides and proteins of commercial importance, are added to control aspects such as texture, stability, rheology, and sensory properties. The research's primary emphasis should be on the hydrocolloids themselves, with thorough descriptions of their source, nature, and physicochemical characteristics. Manuscripts are expected to clearly outline specific aims and objectives, include a fundamental discussion of research findings at the molecular level, and address the significance of the results. Studies on hydrocolloids in complex formulations should concentrate on their overall properties and mechanisms of action, while simple formulation development studies may not be considered for publication.
The main areas of interest are:
-Chemical and physicochemical characterisation
Thermal properties including glass transitions and conformational changes-
Rheological properties including viscosity, viscoelastic properties and gelation behaviour-
The influence on organoleptic properties-
Interfacial properties including stabilisation of dispersions, emulsions and foams-
Film forming properties with application to edible films and active packaging-
Encapsulation and controlled release of active compounds-
The influence on health including their role as dietary fibre-
Manipulation of hydrocolloid structure and functionality through chemical, biochemical and physical processes-
New hydrocolloids and hydrocolloid sources of commercial potential.
The Journal also publishes Review articles that provide an overview of the latest developments in topics of specific interest to researchers in this field of activity.