Noémie Coulon , Sophie Elliott , Thomas Barreau , Julie Lucas , Emma Gousset , Eric Feunteun , Alexandre Carpentier
{"title":"Elasmobranch vulnerability to global warming: insights from bioenergetic modelling of catsharks under climate scenarios","authors":"Noémie Coulon , Sophie Elliott , Thomas Barreau , Julie Lucas , Emma Gousset , Eric Feunteun , Alexandre Carpentier","doi":"10.1016/j.ecolmodel.2025.111157","DOIUrl":null,"url":null,"abstract":"<div><div>Ectotherms are especially vulnerable to global warming due to their temperature-sensitive metabolic processes, impacting survival and reproductive success. Elasmobranchs, with slow life histories and low reproductive rates, may face amplified risks. In this study, we investigated two catshark species with distinct life traits and distributions: the Small-spotted Catshark (<em>Scyliorhinus canicula</em>) and the Nursehound (<em>S. stellaris</em>). Using newly calibrated bioenergetic models, we assessed changes in growth, sexual maturity, offspring production, and population dynamics under two CMIP6 climate scenarios projected for 2100: SSP2–4.5 (Middle of the Road) and SSP5–8.5 (Fossil-fueled Development), comparing these to historical data (1994–2015). Survival rates for early life stages remained similar under historical temperatures (80 %) and SSP2 (83 %) but dropped sharply under SSP5 to 33 % for <em>S. canicula</em> and 23 % for <em>S. stellaris</em>. Under both SSP2 and SSP5<em>, S. canicula</em> showed slight delays in maturation, yet the proportion of mature individuals ultimately exceeded historical levels in SSP2. Conversely, <em>S. stellaris</em> experienced progressively delayed maturation with warming. In SSP5, reduced growth, reproduction, and survival caused a population crash for <em>S. stellaris</em>, suggesting potential extinction. Our results reveal contrasting climate impacts on these species, underscoring the risk for late-maturing, low-fecundity, and narrowly distributed species. This emphasizes the urgency of conservation strategies tailored to mitigate their vulnerability to global warming.</div></div>","PeriodicalId":51043,"journal":{"name":"Ecological Modelling","volume":"506 ","pages":"Article 111157"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Modelling","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304380025001425","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ectotherms are especially vulnerable to global warming due to their temperature-sensitive metabolic processes, impacting survival and reproductive success. Elasmobranchs, with slow life histories and low reproductive rates, may face amplified risks. In this study, we investigated two catshark species with distinct life traits and distributions: the Small-spotted Catshark (Scyliorhinus canicula) and the Nursehound (S. stellaris). Using newly calibrated bioenergetic models, we assessed changes in growth, sexual maturity, offspring production, and population dynamics under two CMIP6 climate scenarios projected for 2100: SSP2–4.5 (Middle of the Road) and SSP5–8.5 (Fossil-fueled Development), comparing these to historical data (1994–2015). Survival rates for early life stages remained similar under historical temperatures (80 %) and SSP2 (83 %) but dropped sharply under SSP5 to 33 % for S. canicula and 23 % for S. stellaris. Under both SSP2 and SSP5, S. canicula showed slight delays in maturation, yet the proportion of mature individuals ultimately exceeded historical levels in SSP2. Conversely, S. stellaris experienced progressively delayed maturation with warming. In SSP5, reduced growth, reproduction, and survival caused a population crash for S. stellaris, suggesting potential extinction. Our results reveal contrasting climate impacts on these species, underscoring the risk for late-maturing, low-fecundity, and narrowly distributed species. This emphasizes the urgency of conservation strategies tailored to mitigate their vulnerability to global warming.
期刊介绍:
The journal is concerned with the use of mathematical models and systems analysis for the description of ecological processes and for the sustainable management of resources. Human activity and well-being are dependent on and integrated with the functioning of ecosystems and the services they provide. We aim to understand these basic ecosystem functions using mathematical and conceptual modelling, systems analysis, thermodynamics, computer simulations, and ecological theory. This leads to a preference for process-based models embedded in theory with explicit causative agents as opposed to strictly statistical or correlative descriptions. These modelling methods can be applied to a wide spectrum of issues ranging from basic ecology to human ecology to socio-ecological systems. The journal welcomes research articles, short communications, review articles, letters to the editor, book reviews, and other communications. The journal also supports the activities of the [International Society of Ecological Modelling (ISEM)](http://www.isemna.org/).