Steering nonlocality in high-speed telecommunication system without detection loophole

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Qiang Zeng, Huihong Yuan, Haoyang Wang, Lai Zhou, Zhiliang Yuan
{"title":"Steering nonlocality in high-speed telecommunication system without detection loophole","authors":"Qiang Zeng, Huihong Yuan, Haoyang Wang, Lai Zhou, Zhiliang Yuan","doi":"10.1038/s41534-025-01021-0","DOIUrl":null,"url":null,"abstract":"<p>Nonlocal correlation represents the key feature of quantum mechanics, and is an exploitable resource in quantum information processing. However, the loophole issues and the associated applicability compromises hamper the practical applications. We report the first time-bin entangled detection-loophole-free steering nonlocality demonstration in a fully chip-fiber telecommunication system, with an ultra-fast measurement switching rate (1.25 GHz). In this endeavor, we propose the phase-encoding measurement scheme to adapt the system to time-bin degree of freedom, and design and fabricate a low-loss silicon chip for efficient entanglement generation. An asymmetric configuration is introduced to mimic the active measurement implementation at the steering party thus bypassing the phase modulation loss. Consequently, we build a fiber-optic setup that can overcome the detection efficiency required by conclusive quantum steering with multiple actively switched measurement settings. Our setup presents an immediate platform for exploring applications based on steering nonlocality, especially for quantum communication.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"259 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-025-01021-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Nonlocal correlation represents the key feature of quantum mechanics, and is an exploitable resource in quantum information processing. However, the loophole issues and the associated applicability compromises hamper the practical applications. We report the first time-bin entangled detection-loophole-free steering nonlocality demonstration in a fully chip-fiber telecommunication system, with an ultra-fast measurement switching rate (1.25 GHz). In this endeavor, we propose the phase-encoding measurement scheme to adapt the system to time-bin degree of freedom, and design and fabricate a low-loss silicon chip for efficient entanglement generation. An asymmetric configuration is introduced to mimic the active measurement implementation at the steering party thus bypassing the phase modulation loss. Consequently, we build a fiber-optic setup that can overcome the detection efficiency required by conclusive quantum steering with multiple actively switched measurement settings. Our setup presents an immediate platform for exploring applications based on steering nonlocality, especially for quantum communication.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信