Alexei Bazavov, Brandon Henke, Leon Hostetler, Dean Lee, Huey-Wen Lin, Giovanni Pederiva, Andrea Shindler
{"title":"Efficient state preparation for the Schwinger model with a theta term","authors":"Alexei Bazavov, Brandon Henke, Leon Hostetler, Dean Lee, Huey-Wen Lin, Giovanni Pederiva, Andrea Shindler","doi":"10.1103/physrevd.111.074515","DOIUrl":null,"url":null,"abstract":"We present a comparison of different quantum state preparation algorithms and their overall efficiency for the Schwinger model with a theta term. While adiabatic state preparation is proved to be effective, in practice it leads to large gate counts to prepare the ground state. The quantum approximate optimization algorithm (QAOA) provides excellent results while keeping the counts small by design, at the cost of an expensive classical minimization process. We introduce a “blocked” modification of the Schwinger Hamiltonian to be used in the QAOA that further decreases the length of the algorithms as the size of the problem is increased. The rodeo algorithm (RA) provides a powerful tool to efficiently prepare any eigenstate of the Hamiltonian, as long as its overlap with the initial guess is large enough. We obtain the best results when combining the blocked QAOA ansatz and the RA, as this provides an excellent initial state with a relatively short algorithm without the need to perform any classical steps for large problem sizes. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"48 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.074515","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We present a comparison of different quantum state preparation algorithms and their overall efficiency for the Schwinger model with a theta term. While adiabatic state preparation is proved to be effective, in practice it leads to large gate counts to prepare the ground state. The quantum approximate optimization algorithm (QAOA) provides excellent results while keeping the counts small by design, at the cost of an expensive classical minimization process. We introduce a “blocked” modification of the Schwinger Hamiltonian to be used in the QAOA that further decreases the length of the algorithms as the size of the problem is increased. The rodeo algorithm (RA) provides a powerful tool to efficiently prepare any eigenstate of the Hamiltonian, as long as its overlap with the initial guess is large enough. We obtain the best results when combining the blocked QAOA ansatz and the RA, as this provides an excellent initial state with a relatively short algorithm without the need to perform any classical steps for large problem sizes. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.