Frederik Schröder, Martin P. van Exter, Meng Xiong, George Kountouris, Martijn Wubs, Philip T. Kristensen, Nicolas Stenger
{"title":"Confocal polarization tomography of dielectric nanocavities","authors":"Frederik Schröder, Martin P. van Exter, Meng Xiong, George Kountouris, Martijn Wubs, Philip T. Kristensen, Nicolas Stenger","doi":"10.1515/nanoph-2024-0744","DOIUrl":null,"url":null,"abstract":"We employ polarization tomography to characterize the modal properties of a dielectric nanocavity with sub-wavelength mode confinement. Our analysis of reflection spectra shows that the Fano-lineshape depends strongly on the polarization in a confocal configuration, and that the lineshape can be transformed into a Lorentzian-like peak for a certain polarization. For this polarization setting, the background is almost fully suppressed in a finite range of frequencies. This enables us to identify another resonance that has not yet been experimentally reported for these nanocavities. Lastly, we use symmetry-forbidden polarizations and show that, surprisingly, the modal resonance features of the system remain visible.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"16 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0744","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We employ polarization tomography to characterize the modal properties of a dielectric nanocavity with sub-wavelength mode confinement. Our analysis of reflection spectra shows that the Fano-lineshape depends strongly on the polarization in a confocal configuration, and that the lineshape can be transformed into a Lorentzian-like peak for a certain polarization. For this polarization setting, the background is almost fully suppressed in a finite range of frequencies. This enables us to identify another resonance that has not yet been experimentally reported for these nanocavities. Lastly, we use symmetry-forbidden polarizations and show that, surprisingly, the modal resonance features of the system remain visible.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.