Alessandro Magazzù, Iryna Kasianiuk, Denis Kasyanyuk, Agnese Callegari, Giovanni Volpe, Onofrio M. Maragò, Luca Biancofiore
{"title":"Optical levitation of Janus particles within focused cylindrical vector beams","authors":"Alessandro Magazzù, Iryna Kasianiuk, Denis Kasyanyuk, Agnese Callegari, Giovanni Volpe, Onofrio M. Maragò, Luca Biancofiore","doi":"10.1515/nanoph-2024-0774","DOIUrl":null,"url":null,"abstract":"The confinement and manipulation of Janus particles have recently garnered significant interest due to their potential applications in fields such as nanotechnology and biophysics, where, under specific circumstances, they can act as microengines and drug carriers. However, the dynamics of Janus particles mostly rely on chemical reactions or thermal gradients, limiting their precision application. To tackle these limitations, we propose the 3D manipulation of Janus particles using focused cylindrical vector beams with a doughnut shaped intensity profile above the focal spot. In particular, we study the behaviour, orientation and manipulation of different highly reflective Janus particles composed of silica or polystyrene with a gold cap in the presence of optical potentials generated by focused cylindrical vector beams. Where the radiation pressure predominantly affects the gold cap rather than the bare particle body of the particle. We demonstrated the potential of the proposed levitation technique for controlling a wide range of Janus particles and real-life complex objects with high reflectivity.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"74 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0774","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The confinement and manipulation of Janus particles have recently garnered significant interest due to their potential applications in fields such as nanotechnology and biophysics, where, under specific circumstances, they can act as microengines and drug carriers. However, the dynamics of Janus particles mostly rely on chemical reactions or thermal gradients, limiting their precision application. To tackle these limitations, we propose the 3D manipulation of Janus particles using focused cylindrical vector beams with a doughnut shaped intensity profile above the focal spot. In particular, we study the behaviour, orientation and manipulation of different highly reflective Janus particles composed of silica or polystyrene with a gold cap in the presence of optical potentials generated by focused cylindrical vector beams. Where the radiation pressure predominantly affects the gold cap rather than the bare particle body of the particle. We demonstrated the potential of the proposed levitation technique for controlling a wide range of Janus particles and real-life complex objects with high reflectivity.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.