Achieving excellent strength-ductility synergy of wire-arc additive manufactured Mg-Gd-Y-Zr alloy via friction stir processing

IF 15.8 1区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING
Wenzhe Yang, Kuitong Yang, Haiou Yang, Zihong Wang, Chenghui Hu, Xin Lin
{"title":"Achieving excellent strength-ductility synergy of wire-arc additive manufactured Mg-Gd-Y-Zr alloy via friction stir processing","authors":"Wenzhe Yang, Kuitong Yang, Haiou Yang, Zihong Wang, Chenghui Hu, Xin Lin","doi":"10.1016/j.jma.2025.03.029","DOIUrl":null,"url":null,"abstract":"Friction stir processing (FSP) was applied to wire-arc additively manufactured (WAAM) Mg-9.54Gd-1.82Y-0.44Zr (GW92K) alloy to address coarse microstructure and porosity defects inherent to layer-by-layer deposition. FSP induced complete dissolution of the coarse Mg5(Gd,Y) eutectic network (initial size: 3.3 ± 0.5 µm) and triggered dynamic recrystallization, achieving a 69.5% grain refinement from 16.4 µm (WAAMed) to 5.0 µm (FSPed). This microstructural transformation enhanced ultimate tensile strength (UTS) by 32% (217 ± 3 MPa → 286 ± 2 MPa), yield strength (YS) by 46% (124 ± 2 MPa → 182 ± 7 MPa), and elongation (EL) by 35% (9.7 ± 1.1% → 13.1 ± 1.4%). Quantitative analysis via Hall-Petch relationship confirmed that grain refinement contributed ∼50 MPa (79%) of the total YS increment, while nano-precipitation (β′′/β′ phases &lt;20 nm) effects accounted for the remaining ∼13 MPa. The simultaneous strength-ductility enhancement originates from FSP-induced defect elimination (porosity reduction: 1.75% → 0.18%) and dual-phase grain boundary pinning by Zr particles and β-Mg<sub>5</sub>(Gd,Y) precipitates. These findings establish FSP as a viable post-treatment for overcoming WAAM limitations in high-performance Mg-RE alloy fabrication.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"71 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2025.03.029","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Friction stir processing (FSP) was applied to wire-arc additively manufactured (WAAM) Mg-9.54Gd-1.82Y-0.44Zr (GW92K) alloy to address coarse microstructure and porosity defects inherent to layer-by-layer deposition. FSP induced complete dissolution of the coarse Mg5(Gd,Y) eutectic network (initial size: 3.3 ± 0.5 µm) and triggered dynamic recrystallization, achieving a 69.5% grain refinement from 16.4 µm (WAAMed) to 5.0 µm (FSPed). This microstructural transformation enhanced ultimate tensile strength (UTS) by 32% (217 ± 3 MPa → 286 ± 2 MPa), yield strength (YS) by 46% (124 ± 2 MPa → 182 ± 7 MPa), and elongation (EL) by 35% (9.7 ± 1.1% → 13.1 ± 1.4%). Quantitative analysis via Hall-Petch relationship confirmed that grain refinement contributed ∼50 MPa (79%) of the total YS increment, while nano-precipitation (β′′/β′ phases <20 nm) effects accounted for the remaining ∼13 MPa. The simultaneous strength-ductility enhancement originates from FSP-induced defect elimination (porosity reduction: 1.75% → 0.18%) and dual-phase grain boundary pinning by Zr particles and β-Mg5(Gd,Y) precipitates. These findings establish FSP as a viable post-treatment for overcoming WAAM limitations in high-performance Mg-RE alloy fabrication.

Abstract Image

通过搅拌摩擦加工制备的Mg-Gd-Y-Zr合金实现了优异的强延性协同作用
采用搅拌摩擦工艺(FSP)对线弧增材制造(WAAM) Mg-9.54Gd-1.82Y-0.44Zr (GW92K)合金进行了加工,以解决逐层沉积过程中存在的组织粗糙和气孔缺陷。FSP诱导Mg5(Gd,Y)粗共晶网络(初始尺寸:3.3±0.5µm)完全溶解,并触发动态再结晶,晶粒细化从16.4µm (WAAMed)到5.0µm (FSPed),细化率达到69.5%。这种显微组织转变使极限抗拉强度(UTS)提高32%(217±3 MPa→286±2 MPa),屈服强度(YS)提高46%(124±2 MPa→182±7 MPa),伸长率(EL)提高35%(9.7±1.1%→13.1±1.4%)。通过Hall-Petch关系进行的定量分析证实,晶粒细化贡献了总YS增量的约50 MPa(79%),而纳米沉淀(β′/β′相<;20 nm)效应占剩余的约13 MPa。fsp诱导的缺陷消除(孔隙率降低:1.75%→0.18%)和Zr颗粒与β-Mg5(Gd,Y)相的双相晶界钉住同时增强了材料的强度和塑性。这些发现表明FSP是克服高性能Mg-RE合金制造中WAAM限制的可行后处理方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Magnesium and Alloys
Journal of Magnesium and Alloys Engineering-Mechanics of Materials
CiteScore
20.20
自引率
14.80%
发文量
52
审稿时长
59 days
期刊介绍: The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信