Rhianna E. Lee-Ferris, Kenichi Okuda, Jacob R. Galiger, Stephen A. Schworer, Troy D. Rogers, Hong Dang, Rodney Gilmore, Caitlin Edwards, Gillian Crisp, Satoko Nakano, Anne M. Cawley, Raymond J. Pickles, Samuel C. Gallant, Elisa Crisci, Lauraine Rivier, James S. Hagood, Wanda K. O’Neal, Ralph S. Baric, Barbara R. Grubb, Richard C. Boucher, Scott H. Randell
{"title":"Prolonged airway explant culture enables study of health, disease, and viral pathogenesis","authors":"Rhianna E. Lee-Ferris, Kenichi Okuda, Jacob R. Galiger, Stephen A. Schworer, Troy D. Rogers, Hong Dang, Rodney Gilmore, Caitlin Edwards, Gillian Crisp, Satoko Nakano, Anne M. Cawley, Raymond J. Pickles, Samuel C. Gallant, Elisa Crisci, Lauraine Rivier, James S. Hagood, Wanda K. O’Neal, Ralph S. Baric, Barbara R. Grubb, Richard C. Boucher, Scott H. Randell","doi":"10.1126/sciadv.adp0451","DOIUrl":null,"url":null,"abstract":"<div >In vitro models play a major role in studying airway physiology and disease. However, the native lung’s complex tissue architecture and nonepithelial cell lineages are not preserved in these models. Ex vivo tissue models could overcome in vitro limitations, but methods for long-term maintenance of ex vivo tissue have not been established. Here, we describe methods to culture human large airway explants, small airway explants, and precision-cut lung slices for at least 14 days. Human airway explants recapitulate genotype-specific electrophysiology; characteristic epithelial, endothelial, stromal, and immune cell populations; and model viral infection after 14 days in culture. These methods also maintain mouse, rabbit, and pig tracheal explants. Notably, intact airway tissue can be cryopreserved, thawed, and used to generate viable explants with recovery of function 14 days postthaw. These studies highlight the broad applications of airway tissue explants and their use as translational intermediates between in vitro and in vivo studies.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 17","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adp0451","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adp0451","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In vitro models play a major role in studying airway physiology and disease. However, the native lung’s complex tissue architecture and nonepithelial cell lineages are not preserved in these models. Ex vivo tissue models could overcome in vitro limitations, but methods for long-term maintenance of ex vivo tissue have not been established. Here, we describe methods to culture human large airway explants, small airway explants, and precision-cut lung slices for at least 14 days. Human airway explants recapitulate genotype-specific electrophysiology; characteristic epithelial, endothelial, stromal, and immune cell populations; and model viral infection after 14 days in culture. These methods also maintain mouse, rabbit, and pig tracheal explants. Notably, intact airway tissue can be cryopreserved, thawed, and used to generate viable explants with recovery of function 14 days postthaw. These studies highlight the broad applications of airway tissue explants and their use as translational intermediates between in vitro and in vivo studies.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.