Optimizing Angiopep-2 Density on Polymeric Nanoparticles for Enhanced Blood–Brain Barrier Penetration and Glioblastoma Targeting: Insights From In Vitro and In Vivo Experiments

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Weisen Zhang, Ahmed Refaat, Haoqin Li, Douer Zhu, Ziqiu Tong, Joseph Anthony Nicolazzo, Bo Peng, Hua Bai, Lars Esser, Nicolas Hans Voelcker
{"title":"Optimizing Angiopep-2 Density on Polymeric Nanoparticles for Enhanced Blood–Brain Barrier Penetration and Glioblastoma Targeting: Insights From In Vitro and In Vivo Experiments","authors":"Weisen Zhang, Ahmed Refaat, Haoqin Li, Douer Zhu, Ziqiu Tong, Joseph Anthony Nicolazzo, Bo Peng, Hua Bai, Lars Esser, Nicolas Hans Voelcker","doi":"10.1002/adfm.202425165","DOIUrl":null,"url":null,"abstract":"The blood–brain barrier (BBB) poses a formidable challenge to drug delivery to the brain. One promising approach involves receptor-mediated transcytosis via Angiopep-2 peptide (Ang-2)-conjugated nanoparticles. However, the influence of Ang-2 density on BBB penetration remains poorly understood. We developed a versatile polymeric nanoparticle system with tunable Ang-2 surface density and systematically examined its influence on BBB penetration through various in vitro assays and an in vivo study. The results reveal a nuanced relationship between ligand density and BBB penetration across experimental setups. In 2D cell culture, Ang-2 density positively correlates with nanoparticle association in human cerebral microvascular endothelial cells (hCMEC/D3) with a distinctive inflection point. Conversely, in the Transwell model, higher Ang-2 density negatively correlate with BBB penetration, while the BBB-glioblastoma (GBM)-on-a-chip shows the opposite trend. Disparities may be due to differences in avidity under static versus dynamic conditions, modulating nanoparticle interactions due to fluidic forces. In vivo studies align with the microfluidic model. Loading doxorubicin into the optimized nanoparticles achieves controlled pH-responsive release and enhanced anticancer effects against U87 GBM cells in 2D cell cultures and a 3D BBB-GBM-on-a-chip. These results underscore the importance of optimizing Ang-2 density for BBB penetration and emphasize the utility of dynamic models for the preclinical assessment of brain-targeting nanoparticles.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"24 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202425165","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The blood–brain barrier (BBB) poses a formidable challenge to drug delivery to the brain. One promising approach involves receptor-mediated transcytosis via Angiopep-2 peptide (Ang-2)-conjugated nanoparticles. However, the influence of Ang-2 density on BBB penetration remains poorly understood. We developed a versatile polymeric nanoparticle system with tunable Ang-2 surface density and systematically examined its influence on BBB penetration through various in vitro assays and an in vivo study. The results reveal a nuanced relationship between ligand density and BBB penetration across experimental setups. In 2D cell culture, Ang-2 density positively correlates with nanoparticle association in human cerebral microvascular endothelial cells (hCMEC/D3) with a distinctive inflection point. Conversely, in the Transwell model, higher Ang-2 density negatively correlate with BBB penetration, while the BBB-glioblastoma (GBM)-on-a-chip shows the opposite trend. Disparities may be due to differences in avidity under static versus dynamic conditions, modulating nanoparticle interactions due to fluidic forces. In vivo studies align with the microfluidic model. Loading doxorubicin into the optimized nanoparticles achieves controlled pH-responsive release and enhanced anticancer effects against U87 GBM cells in 2D cell cultures and a 3D BBB-GBM-on-a-chip. These results underscore the importance of optimizing Ang-2 density for BBB penetration and emphasize the utility of dynamic models for the preclinical assessment of brain-targeting nanoparticles.

Abstract Image

优化聚合纳米颗粒上血管内皮素-2密度,增强血脑屏障穿透和胶质母细胞瘤靶向:来自体外和体内实验的见解
血脑屏障(BBB)对药物输送到大脑构成了巨大的挑战。一种有希望的方法是通过Angiopep-2肽(ang2)共轭纳米颗粒介导受体介导的胞吞作用。然而,Ang-2密度对血脑屏障渗透的影响仍然知之甚少。我们开发了一种具有可调Ang-2表面密度的多功能聚合物纳米颗粒系统,并通过各种体外实验和体内研究系统地研究了其对血脑屏障渗透的影响。结果揭示了配体密度和血脑屏障穿透之间的微妙关系。在二维细胞培养中,人大脑微血管内皮细胞(hCMEC/D3)中Ang-2密度与纳米颗粒关联呈正相关,并有一个独特的拐点。相反,在Transwell模型中,较高的Ang-2密度与血脑屏障穿透呈负相关,而芯片上的血脑屏障母细胞瘤(GBM)则呈现相反的趋势。差异可能是由于静态和动态条件下的贪婪度差异,由于流体力而调节纳米颗粒相互作用。体内研究与微流体模型一致。将阿霉素加载到优化的纳米颗粒中,可以在2D细胞培养和3D bbb -GBM芯片中实现受控的ph响应释放,并增强对U87 GBM细胞的抗癌作用。这些结果强调了优化Ang-2密度对血脑屏障穿透的重要性,并强调了动态模型在脑靶向纳米颗粒临床前评估中的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信