Ultra-weak infrared light detection based on steep-slope phototransistors

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jiadong Mei, Junzhuan Wang, Xuetao Gan, Xiaomu Wang
{"title":"Ultra-weak infrared light detection based on steep-slope phototransistors","authors":"Jiadong Mei, Junzhuan Wang, Xuetao Gan, Xiaomu Wang","doi":"10.1038/s41467-025-59006-8","DOIUrl":null,"url":null,"abstract":"<p>A photodetector’s sensitivity is conventionally quantified by specific detectivity, which balances responsivity and noise. However, we reveal that the turn-on threshold power is fundamentally governed by photo-carrier injection rather than detectivity. In conventional phototransistors/diodes, incident light cannot generate photocurrent via thermionic injection until its intensity saturates the surface potential. To overcome this limit, we design a photo-tunneling transistor with a partially dual-gated black phosphorus channel. This device breaks the injection barrier, achieving a temperature-independent subthreshold swing of ~50 mV/dec up to 250 K and reducing the threshold power by over an order of magnitude. At 80 K, it detects mid-wave infrared light with a minimum power of ~35 pW, outperforming conventional phototransistors with higher detectivity by ~30-fold. Our work redefines the sensitivity criteria for photodetectors and highlights the potential of steep-slope transistors in low-power optoelectronics, offering a pathway to ultrasensitive infrared sensing and imaging technologies.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"140 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59006-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

A photodetector’s sensitivity is conventionally quantified by specific detectivity, which balances responsivity and noise. However, we reveal that the turn-on threshold power is fundamentally governed by photo-carrier injection rather than detectivity. In conventional phototransistors/diodes, incident light cannot generate photocurrent via thermionic injection until its intensity saturates the surface potential. To overcome this limit, we design a photo-tunneling transistor with a partially dual-gated black phosphorus channel. This device breaks the injection barrier, achieving a temperature-independent subthreshold swing of ~50 mV/dec up to 250 K and reducing the threshold power by over an order of magnitude. At 80 K, it detects mid-wave infrared light with a minimum power of ~35 pW, outperforming conventional phototransistors with higher detectivity by ~30-fold. Our work redefines the sensitivity criteria for photodetectors and highlights the potential of steep-slope transistors in low-power optoelectronics, offering a pathway to ultrasensitive infrared sensing and imaging technologies.

Abstract Image

基于陡坡光电晶体管的超弱红外光探测
光电探测器的灵敏度通常是通过特定的探测率来量化的,它平衡了响应性和噪声。然而,我们发现开启阈值功率基本上是由光载流子注入而不是探测性决定的。在传统的光电晶体管/二极管中,入射光不能通过热离子注入产生光电流,直到其强度饱和表面电位。为了克服这一限制,我们设计了一种具有部分双门控黑磷通道的光隧道晶体管。该器件打破了注入障碍,在250 K时实现了与温度无关的~50 mV/dec亚阈值摆动,并将阈值功率降低了一个数量级以上。在80 K时,它能以35 pW的最小功率探测中波红外光,比具有更高探测能力的传统光电晶体管高出30倍。我们的工作重新定义了光电探测器的灵敏度标准,并强调了陡坡晶体管在低功率光电子学中的潜力,为超灵敏红外传感和成像技术提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信