Simon Ndecky, Ludivine Malherbe, Claire Villette, Véronique Chalvon, Isabelle Meusnier, Dennisse Beltran-Valencia, Nicolas Baumberger, Michael Riemann, Thomas Kroj, Antony Champion, Thierry Heitz
{"title":"Rice JASMONIC ACID OXIDASES control resting jasmonate metabolism to promote growth and repress basal immune responses","authors":"Simon Ndecky, Ludivine Malherbe, Claire Villette, Véronique Chalvon, Isabelle Meusnier, Dennisse Beltran-Valencia, Nicolas Baumberger, Michael Riemann, Thomas Kroj, Antony Champion, Thierry Heitz","doi":"10.1093/plphys/kiaf161","DOIUrl":null,"url":null,"abstract":"Catabolic conversions within the jasmonate pathway have substantial consequences on phytohormone signaling output. In dicots, the jasmonic acid oxidase (JAO) catabolic route leads to jasmonic acid (JA) hydroxylation, which limits its conjugation into bioactive jasmonoyl-isoleucine (JA-Ile). Here, we functionally characterized the JAO pathway in rice (Oryza sativa) and demonstrated its key function in promoting growth and attenuating JA responses in vegetative tissues. The rice genome encodes four JAO-related homologs, three of which generate hydroxy-JA in vitro and rescue the high-defense phenotype of the Arabidopsis jao2-2 mutant. By generating and analyzing a series of single to quadruple rice jao mutants, we showed additive effects of cumulative JAO depletion on JA metabolism, basal defense levels, growth inhibition, fitness and global metabolic reprogramming. The growth of JAO-deficient lines was substantially repressed at the juvenile stage, while the impact was milder in later vegetative development, during which plants opposed enhanced resistance to virulent and avirulent strains of Magnaporthe oryzae, the causal agent of fungal blast disease. Moreover, jao mutants exhibited slightly reduced fertility and impaired seed filling. Our findings identify the JAO pathway as an integral component of basal JA/JA-Ile homeostasis and an important determinant of the growth-defense tradeoff in rice. The regulatory function of this pathway is conserved in monocots, opening possibilities for selectively modulating basal JA responses in major cereal crops to optimize agronomic traits.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"42 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiaf161","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Catabolic conversions within the jasmonate pathway have substantial consequences on phytohormone signaling output. In dicots, the jasmonic acid oxidase (JAO) catabolic route leads to jasmonic acid (JA) hydroxylation, which limits its conjugation into bioactive jasmonoyl-isoleucine (JA-Ile). Here, we functionally characterized the JAO pathway in rice (Oryza sativa) and demonstrated its key function in promoting growth and attenuating JA responses in vegetative tissues. The rice genome encodes four JAO-related homologs, three of which generate hydroxy-JA in vitro and rescue the high-defense phenotype of the Arabidopsis jao2-2 mutant. By generating and analyzing a series of single to quadruple rice jao mutants, we showed additive effects of cumulative JAO depletion on JA metabolism, basal defense levels, growth inhibition, fitness and global metabolic reprogramming. The growth of JAO-deficient lines was substantially repressed at the juvenile stage, while the impact was milder in later vegetative development, during which plants opposed enhanced resistance to virulent and avirulent strains of Magnaporthe oryzae, the causal agent of fungal blast disease. Moreover, jao mutants exhibited slightly reduced fertility and impaired seed filling. Our findings identify the JAO pathway as an integral component of basal JA/JA-Ile homeostasis and an important determinant of the growth-defense tradeoff in rice. The regulatory function of this pathway is conserved in monocots, opening possibilities for selectively modulating basal JA responses in major cereal crops to optimize agronomic traits.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.