Linlin Ma, Hanyun Yang, Wenting Yu, Ming Bai, Lepeng Zhou, Zhongjie Ren, Hongli Chen, Lei Zhang, Bin Xue, Wenxu Sun, Yi Cao
{"title":"Enhanced Mechanical Properties and Sensing Performance of MXene-Based Dual-Crosslinked Hydrogel via EGCG Coating and Dynamic Covalent Bond","authors":"Linlin Ma, Hanyun Yang, Wenting Yu, Ming Bai, Lepeng Zhou, Zhongjie Ren, Hongli Chen, Lei Zhang, Bin Xue, Wenxu Sun, Yi Cao","doi":"10.1002/smll.202501322","DOIUrl":null,"url":null,"abstract":"MXenes hold great promise for flexible sensors due to their outstanding electrical and mechanical properties. However, their practical application in aqueous environments is often compromised by oxidation susceptibility. Here, epigallocatechin gallate (EGCG), a naturally derived compound is introduced, as a protective coating for Ti₃C₂T<sub>x</sub> MXene nanosheets. The catechol groups in EGCG form strong hydrogen bonds with MXene, significantly enhancing its oxidation resistance in aqueous environments for up to 40 days. By incorporating EGCG-coated MXene (MXene@EGCG) to form a dual-crosslinked hybrid network, a tough hydrogel with exceptional properties, including enhanced compressibility (>95%), high compressive strength (5.43 MPa), minimal residual strain (<1%), and rapid recovery within seconds is developed. Furthermore, the hydrogel exhibits superior sensing capabilities with a compressive gauge factor exceeding 10 and a stretch gauge factor of up to 3.72. This well-designed structure also endows it a low degree of hysteresis in compressive sensing. In vitro experiments confirm its great biocompatibility, desired self-adhesion properties, and practical utility as a sensing platform. This approach pioneers a versatile and transformative strategy for enhancing MXene stability and engineerability, unlocking new possibilities for fabricating high-performance hydrogel-based sensors capable of effectively sensing dynamic strains, which may find broad applications in the fields of multifunctional bioelectronics.","PeriodicalId":228,"journal":{"name":"Small","volume":"2 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202501322","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
MXenes hold great promise for flexible sensors due to their outstanding electrical and mechanical properties. However, their practical application in aqueous environments is often compromised by oxidation susceptibility. Here, epigallocatechin gallate (EGCG), a naturally derived compound is introduced, as a protective coating for Ti₃C₂Tx MXene nanosheets. The catechol groups in EGCG form strong hydrogen bonds with MXene, significantly enhancing its oxidation resistance in aqueous environments for up to 40 days. By incorporating EGCG-coated MXene (MXene@EGCG) to form a dual-crosslinked hybrid network, a tough hydrogel with exceptional properties, including enhanced compressibility (>95%), high compressive strength (5.43 MPa), minimal residual strain (<1%), and rapid recovery within seconds is developed. Furthermore, the hydrogel exhibits superior sensing capabilities with a compressive gauge factor exceeding 10 and a stretch gauge factor of up to 3.72. This well-designed structure also endows it a low degree of hysteresis in compressive sensing. In vitro experiments confirm its great biocompatibility, desired self-adhesion properties, and practical utility as a sensing platform. This approach pioneers a versatile and transformative strategy for enhancing MXene stability and engineerability, unlocking new possibilities for fabricating high-performance hydrogel-based sensors capable of effectively sensing dynamic strains, which may find broad applications in the fields of multifunctional bioelectronics.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.