Three-Dimensional Composite Aerogel Scaffolds Based on Electrospun Poly(lactic acid)/Gelatin and Silica-Strontium Oxide Short Fibers Promote Bone Defect Healing
{"title":"Three-Dimensional Composite Aerogel Scaffolds Based on Electrospun Poly(lactic acid)/Gelatin and Silica-Strontium Oxide Short Fibers Promote Bone Defect Healing","authors":"Jie Cui, Lixiang Zhang, Muhammad Shafiq, Panpan Shang, Xiao Yu, Yangfan Ding, Pengfei Cai, JiaHui Song, Binbin Sun, Mohamed EL-Newehy, Meera Moydeen Abdulhameed, Urszula Stachewicz, Xingping Zhou, Yuan Xu, Xiumei Mo","doi":"10.1093/burnst/tkaf028","DOIUrl":null,"url":null,"abstract":"Bone defect regeneration is a dynamic healing process, which relies on intrinsic ability of the body to repair albeit limited healing. The objective of this research was to synthesize hybrid scaffolds based on natural/synthetic polymers and inorganic nanomaterials (NMs). We prepared three-dimensional (3D) composite scaffolds based on flexible silica-strontium oxide (SiO2-SrO) nanofibers and poly(lactic acid)/gelatin (PG) fibers. These scaffolds displayed an ordered porous structure as well as exhibited biocompatibility and biological activity. In vitro release studies demonstrated that the scaffolds enabled sustained and controlled release of silicon ions (Si4+) and strontium ions (Sr2+). Furthermore, these scaffolds not only upregulated the expression of osteogenic-related genes but also promoted tubule-like network formation in human umbilical vein endothelial cells (HUVECs) in vitro. The scaffold enabled concurrent bone regeneration and vascularization in rat skull defect repair. Taken together, our strategy of leveraging the synergistic effect of SiO2-SrO short fibers and PG fibers may have potential to promote bone regeneration and potentially other bio-related disciplines.","PeriodicalId":9553,"journal":{"name":"Burns & Trauma","volume":"15 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Burns & Trauma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/burnst/tkaf028","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DERMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bone defect regeneration is a dynamic healing process, which relies on intrinsic ability of the body to repair albeit limited healing. The objective of this research was to synthesize hybrid scaffolds based on natural/synthetic polymers and inorganic nanomaterials (NMs). We prepared three-dimensional (3D) composite scaffolds based on flexible silica-strontium oxide (SiO2-SrO) nanofibers and poly(lactic acid)/gelatin (PG) fibers. These scaffolds displayed an ordered porous structure as well as exhibited biocompatibility and biological activity. In vitro release studies demonstrated that the scaffolds enabled sustained and controlled release of silicon ions (Si4+) and strontium ions (Sr2+). Furthermore, these scaffolds not only upregulated the expression of osteogenic-related genes but also promoted tubule-like network formation in human umbilical vein endothelial cells (HUVECs) in vitro. The scaffold enabled concurrent bone regeneration and vascularization in rat skull defect repair. Taken together, our strategy of leveraging the synergistic effect of SiO2-SrO short fibers and PG fibers may have potential to promote bone regeneration and potentially other bio-related disciplines.
期刊介绍:
The first open access journal in the field of burns and trauma injury in the Asia-Pacific region, Burns & Trauma publishes the latest developments in basic, clinical and translational research in the field. With a special focus on prevention, clinical treatment and basic research, the journal welcomes submissions in various aspects of biomaterials, tissue engineering, stem cells, critical care, immunobiology, skin transplantation, and the prevention and regeneration of burns and trauma injuries. With an expert Editorial Board and a team of dedicated scientific editors, the journal enjoys a large readership and is supported by Southwest Hospital, which covers authors'' article processing charges.