Cheryl Suwen Law, Juan Wang, Kornelius Nielsch, Andrew D. Abell, Juan Bisquert, Abel Santos
{"title":"Recent advances in fluidic neuromorphic computing","authors":"Cheryl Suwen Law, Juan Wang, Kornelius Nielsch, Andrew D. Abell, Juan Bisquert, Abel Santos","doi":"10.1063/5.0235267","DOIUrl":null,"url":null,"abstract":"Human brain is capable of optimizing information flow and processing without energy-intensive data shuttling between processor and memory. At the core of this unique capability are billions of neurons connected through trillions of synapses—basic processing units of the brain. The action potentials or “spikes” based temporal processing using the regulated flow of ions across ion channels in neuron cells allows sparse and efficient transmission of data in the brain. Emerging systems based on confined fluidic systems have provided a framework for a new type of neuromorphic computing with lower energy consumption, hardware-level plasticity, and multiple information carriers that emulate natural processes and mechanisms of human brain. These systems mimic neuronal architectures by harnessing and modulating ion transport along artificial channels. The spikes-induced ion-to-surface interactions within these fluidic systems enables the control of ionic conductivity to achieve synaptic plasticity for the realization of brain-inspired functionalities such as memory effect and signal transmission. Herein, this review provides an overview of recent advances in fluidic devices such as memristors and other computing components, covering their basic operations, materials and architectures, as well as applications in neuromorphic computing. The review concludes with a brief outline of the challenges that these emerging technologies face and an outlook for the development of fluidic-based brain-inspired computing.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"33 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0235267","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Human brain is capable of optimizing information flow and processing without energy-intensive data shuttling between processor and memory. At the core of this unique capability are billions of neurons connected through trillions of synapses—basic processing units of the brain. The action potentials or “spikes” based temporal processing using the regulated flow of ions across ion channels in neuron cells allows sparse and efficient transmission of data in the brain. Emerging systems based on confined fluidic systems have provided a framework for a new type of neuromorphic computing with lower energy consumption, hardware-level plasticity, and multiple information carriers that emulate natural processes and mechanisms of human brain. These systems mimic neuronal architectures by harnessing and modulating ion transport along artificial channels. The spikes-induced ion-to-surface interactions within these fluidic systems enables the control of ionic conductivity to achieve synaptic plasticity for the realization of brain-inspired functionalities such as memory effect and signal transmission. Herein, this review provides an overview of recent advances in fluidic devices such as memristors and other computing components, covering their basic operations, materials and architectures, as well as applications in neuromorphic computing. The review concludes with a brief outline of the challenges that these emerging technologies face and an outlook for the development of fluidic-based brain-inspired computing.
期刊介绍:
Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles:
Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community.
Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.